48 research outputs found

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search is performed for collimated muon pairs displaced from the primary vertex produced in the decay of long-lived neutral particles in proton–proton collisions at root s=7 TeV centre-of-mass energy, with the ATLAS detector at the LHC. In a 1.9 fb−1event sample collected during 2011, the observed data are consistent with the Standard Model background expectations. Limits on the product of the production cross section and the branching ratio of a Higgs boson decaying to hidden-sector neutral long-lived particles are derived as a function of the particlesʼ mean lifetime

    Search for new phenomena with photon+jet events in proton-proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search is performed for the production of high-mass resonances decaying into a photon and a jet in 3.2 fb−1 of proton-proton collisions at a centre-of-mass energy of √s=13 TeV collected by the ATLAS detector at the Large Hadron Collider. Selected events have an isolated photon and a jet, each with transverse momentum above 150 GeV. No significant deviation of the γ+jet invariant mass distribution from the background-only hypothesis is found. Limits are set at 95% confidence level on the cross sections of generic Gaussian-shaped signals and of a few benchmark phenomena beyond the Standard Model: excited quarks with vector-like couplings to the Standard Model particles, and non-thermal quantum black holes in two models of extra spatial dimensions. The minimum excluded visible cross sections for Gaussian-shaped resonances with width-to-mass ratios of 2% decrease from about 6 fb for a mass of 1.5 TeV to about 0.8 fb for a mass of 5 TeV. The minimum excluded visible cross sections for Gaussian-shaped resonances with width-to-mass ratios of 15% decrease from about 50 fb for a mass of 1.5 TeV to about 1.0 fb for a mass of 5 TeV. Excited quarks are excluded below masses of 4.4 TeV, and non-thermal quantum black holes are excluded below masses of 3.8 (6.2) TeV for Randall-Sundrum (Arkani-Hamed-Dimopoulous-Dvali) models with one (six) extra dimensions

    Mendelian Randomization Analysis Reveals a Causal Influence of Circulating Sclerostin Levels on Bone Mineral Density and Fractures

    Get PDF
    In bone, sclerostin is mainly osteocyte-derived and plays an important local role in adaptive responses to mechanical loading. Whether circulating levels of sclerostin also play a functional role is currently unclear, which we aimed to examine by two-sample Mendelian randomization (MR). A genetic instrument for circulating sclerostin, derived from a genomewide association study (GWAS) meta-analysis of serum sclerostin in 10,584 European-descent individuals, was examined in relation to femoral neck bone mineral density (BMD; n = 32,744) in GEFOS and estimated bone mineral density (eBMD) by heel ultrasound (n = 426,824) and fracture risk (n = 426,795) in UK Biobank. Our GWAS identified two novel serum sclerostin loci, B4GALNT3 (standard deviation [SD]) change in sclerostin per A allele (β = 0.20, p = 4.6 × 10−49) and GALNT1 (β = 0.11 per G allele, p = 4.4 × 10−11). B4GALNT3 is an N-acetyl-galactosaminyltransferase, adding a terminal LacdiNAc disaccharide to target glycocoproteins, found to be predominantly expressed in kidney, whereas GALNT1 is an enzyme causing mucin-type O-linked glycosylation. Using these two single-nucleotide polymorphisms (SNPs) as genetic instruments, MR revealed an inverse causal relationship between serum sclerostin and femoral neck BMD (β = –0.12, 95% confidence interval [CI] –0.20 to –0.05) and eBMD (β = –0.12, 95% CI –0.14 to –0.10), and a positive relationship with fracture risk (β = 0.11, 95% CI 0.01 to 0.21). Colocalization analysis demonstrated common genetic signals within the B4GALNT3 locus for higher sclerostin, lower eBMD, and greater B4GALNT3 expression in arterial tissue (probability >99%). Our findings suggest that higher sclerostin levels are causally related to lower BMD and greater fracture risk. Hence, strategies for reducing circulating sclerostin, for example by targeting glycosylation enzymes as suggested by our GWAS results, may prove valuable in treating osteoporosis

    Las obsesiones antes de Freud: historia y clínica

    Full text link
    corecore