23 research outputs found

    Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk

    Get PDF
    DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P <7.94 x 10(-7). Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. Significance: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.Peer reviewe

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Correction: Nature Communications 10 (2019): art. 4386 DOI: 10.1038/s41467-019-12095-8Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.Peer reviewe

    Haem iron intake and risk of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    Get PDF
    Background Epidemiological studies suggest that haem iron, which is found predominantly in red meat and increases endogenous formation of carcinogenic N-nitroso compounds, may be positively associated with lung cancer. The objective was to examine the relationship between haem iron intake and lung cancer risk using detailed smoking history data and serum cotinine to control for potential confounding. Methods In the European Prospective Investigation into Cancer and Nutrition (EPIC), 416,746 individuals from 10 countries completed demographic and dietary questionnaires at recruitment. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for incident lung cancer (n = 3731) risk relative to haem iron, non-haem iron, and total dietary iron intake. A corresponding analysis was conducted among a nested subset of 800 lung cancer cases and 1489 matched controls for whom serum cotinine was available. Results Haem iron was associated with lung cancer risk, including after adjustment for details of smoking history (time since quitting, number of cigarettes per day): as a continuous variable (HR per 0.3 mg/1000 kcal 1.03, 95% CI 1.00-1.07), and in the highest versus lowest quintile (HR 1.16, 95% CI 1.02-1.32; trend across quintiles: P = 0.035). In contrast, non-haem iron intake was related inversely with lung cancer risk; however, this association attenuated after adjustment for smoking history. Additional adjustment for serum cotinine did not considerably alter the associations detected in the nested case-control subset. Conclusions Greater haem iron intake may be modestly associated with lung cancer risk.Peer reviewe

    High Levels of C-Reactive Protein Are Associated with an Increased Risk of Ovarian Cancer: Results from the Ovarian Cancer Cohort Consortium

    No full text
    Growing epidemiologic evidence supports chronic inflammation as a mechanism of ovarian carcinogenesis. An association between a circulating marker of inflammation, C-reactive protein (CRP), and ovarian cancer risk has been consistently observed, yet, potential heterogeneity of this association by tumor and patient characteristics has not been adequately explored. In this study, we pooled data from case–control studies nested within six cohorts in the Ovarian Cancer Cohort Consortium (OC3) to examine the association between CRP and epithelial ovarian cancer risk overall, by histologic subtype and by participant characteristics. CRP concentrations were measured from prediagnosis serum or plasma in 1,091 cases and 1,951 controls. Multivariable conditional logistic regression was used to estimate ORs and 95% confidence intervals (CI). When CRP was evaluated using tertiles, no associations with ovarian cancer risk were observed. A 67% increased ovarian cancer risk was found for women with CRP concentrations >10 mg/L compared with 10 mg/L was positively associated with risk of mucinous (OR = 9.67; 95% CI = 1.10–84.80) and endometrioid carcinoma (OR = 3.41; 95% CI = 1.07–10.92), and suggestively positive, although not statistically significant, for serous (OR = 1.43; 95% CI = 0.82–2.49) and clear cell carcinoma (OR = 2.05; 95% CI = 0.36–11.57; Pheterogeneity = 0.20). Heterogeneity was observed with oral contraceptive use (Pinteraction = 0.03), where the increased risk was present only among ever users (OR = 3.24; 95% CI = 1.62–6.47). This study adds to the existing evidence that CRP plays a role in ovarian carcinogenesis and suggests that inflammation may be particularly implicated in the etiology of endometrioid and mucinous carcinoma

    Dietary and Circulating Fatty Acids and Ovarian Cancer Risk in the European Prospective Investigation into Cancer and Nutrition

    No full text
    Background: Fatty acids impact obesity, estrogens, and inflammation, which are risk factors for ovarian cancer. Few epidemiologic studies have investigated the association of fatty acids with ovarian cancer. Methods: Within the European Prospective Investigation into Cancer and Nutrition (EPIC), 1,486 incident ovarian cancer cases were identified. Cox proportional hazard models with adjustment for ovarian cancer risk factors were used to estimate HRs of ovarian cancer across quintiles of intake of fatty acids. False discovery rate was computed to control for multiple testing. Multivariable conditional logistic regression models were used to estimate ORs of ovarian cancer across tertiles of plasma fatty acids among 633 cases and two matched controls in a nested case-control analysis. Results: A positive association was found between ovarian cancer and intake of industrial trans elaidic acid [HR comparing fifth with first quintileQ5-Q1 = 1.29; 95% confidence interval (CI) = 1.03-1.62; P trend = 0.02, q-value = 0.06]. Dietary intakes of n-6 linoleic acid (HRQ5-Q1 = 1.10; 95% CI = 1.01-1.21; P trend = 0.03) and n-3 \u3b1-linolenic acid (HRQ5-Q1 = 1.18; 95% CI = 1.05-1.34; P trend = 0.007) from deep-frying fats were also positively associated with ovarian cancer. Suggestive associations were reported for circulating elaidic (OR comparing third with first tertileT3-T1 = 1.39; 95% CI = 0.99-1.94; P trend = 0.06) and \u3b1-linolenic acids (ORT3-T1 = 1.30; 95% CI = 0.98-1.72; P trend = 0.06). Conclusions: Our results suggest that higher intakes and circulating levels of industrial trans elaidic acid, and higher intakes of linoleic acid and \u3b1-linolenic acid from deep-frying fat, may be associated with greater risk of ovarian cancer. Impact: If causal, eliminating industrial trans-fatty acids could offer a straightforward public health action for reducing ovarian cancer risk

    Prognostic gene expression signature for high-grade serous ovarian cancer

    Get PDF
    Background: Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. Patients and methods: Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. Results: Expression levels of 276 genes were associated with OS (false discovery rate < 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P < 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02–2.71; P < 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to –), 5.4 (4.6–7.0), 3.8 (3.3–4.6), 3.2 (2.9–3.7) and 2.3 (2.1–2.6) years. Conclusion: The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches

    Analgesic Use and Ovarian Cancer Risk: An Analysis in the Ovarian Cancer Cohort Consortium.

    Get PDF
    BACKGROUND:Aspirin use is associated with reduced risk of several cancers. A pooled analysis of 12 case-control studies showed a 10% decrease in ovarian cancer risk with regular aspirin use, which was stronger for daily and low-dose users. To prospectively investigate associations of analgesic use with ovarian cancer, we analyzed data from 13 studies in the Ovarian Cancer Cohort Consortium (OC3). METHODS:The current study included 758 829 women who at study enrollment self-reported analgesic use, among whom 3514 developed ovarian cancer. Using Cox regression, we assessed associations between frequent medication use and risk of ovarian cancer. Dose and duration were also evaluated. All statistical tests were two-sided. RESULTS:Women who used aspirin almost daily (≥6 days/wk) vs infrequent/nonuse experienced a 10% reduction in ovarian cancer risk (rate ratio [RR] = 0.90, 95% confidence interval [CI] = 0.82 to 1.00, P = .05). Frequent use (≥4 days/wk) of aspirin (RR = 0.95, 95% CI = 0.88 to 1.03), nonaspirin nonsteroidal anti-inflammatory drugs (NSAIDs; RR = 1.00, 95% CI = 0.90 to 1.11), or acetaminophen (RR = 1.05, 95% CI = 0.88 to 1.24) was not associated with risk. Daily acetaminophen use (RR = 1.28, 95% CI = 1.00 to 1.65, P = .05) was associated with elevated ovarian cancer risk. Risk estimates for frequent, long-term (10+ years) use of aspirin (RR = 1.15, 95% CI = 0.98 to 1.34) or nonaspirin NSAIDs (RR = 1.19, 95% CI = 0.84 to 1.68) were modestly elevated, although not statistically significantly so. CONCLUSIONS:This large, prospective analysis suggests that women who use aspirin daily have a slightly lower risk of developing ovarian cancer (∼10% lower than infrequent/nonuse)-similar to the risk reduction observed in case-control analyses. The observed potential elevated risks for 10+ years of frequent aspirin and NSAID use require further study but could be due to confounding by medical indications for use or variation in drug dosing
    corecore