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Abstract

DNAmethylation is instrumental for gene regulation.Glob-
al changes in the epigenetic landscape have been recognized as
a hallmark of cancer. However, the role ofDNAmethylation in
epithelial ovarian cancer (EOC) remains unclear. In this study,
high-density genetic and DNA methylation data in white
blood cells from the Framingham Heart Study (N ¼ 1,595)
were used to build geneticmodels to predictDNAmethylation
levels. These prediction models were then applied to the
summary statistics of a genome-wide association study
(GWAS) of ovarian cancer including 22,406 EOC cases and
40,941 controls to investigate genetically predicted DNA
methylation levels in association with EOC risk. Among
62,938 CpG sites investigated, genetically predicted methyl-
ation levels at 89 CpG were significantly associated with EOC
risk at a Bonferroni-corrected threshold of P < 7.94� 10�7. Of
them, 87 were located at GWAS-identified EOC susceptibility

regions and two resided in a genomic region not previously
reported to be associated with EOC risk. Integrative analyses
of genetic, methylation, and gene expression data identified
consistent directions of associations across 12 CpG, five
genes, and EOC risk, suggesting that methylation at these
12 CpG may influence EOC risk by regulating expression of
these five genes, namely MAPT, HOXB3, ABHD8, ARH-
GAP27, and SKAP1. We identified novel DNA methylation
markers associated with EOC risk and propose that meth-
ylation at multiple CpG may affect EOC risk via regulation
of gene expression.

Significance: Identification of novel DNA methylation
markers associated with EOC risk suggests that methylation
at multiple CpG may affect EOC risk through regulation of
gene expression.
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Introduction
Ovarian cancer is one of the most deadly cancers among

women in the United States (1) and around the world (2).
Approximately 90% of ovarian neoplasms are epithelial ovar-
ian cancer (EOC; ref. 1), a heterogeneous disease that can be
categorized into five major histotypes (1). Genetic factors have
an important impact on EOC etiology. Large-scale genome-
wide association studies (GWAS) have identified 34 common
risk loci for EOC to date (3). Of these, 27 are specific to the
most common histotype, serous EOC (3). However, known loci
are estimated to account for only a small proportion (�6.4%)
of overall EOC risk (3). In addition, causal genes at most loci
and the underlying pathogenic mechanisms are yet to be
identified.

In addition to genetic susceptibility, cancer initiation and
progression are also influenced by epigenetics (4). The most
extensively studied epigenetic marker is DNA methylation,
which regulates chromatin structure (5) and gene expression
(6). DNA methylation patterns are generally programmed
during normal development (7). Abnormal methylation has
been observed in multiple malignancies, including EOC (8, 9).
Studies have identified multiple DNA methylation markers in
tumor tissue samples as prognostic biomarkers for EOC (10,
11). Several studies have also investigated the potential of DNA
methylation from white blood cells to be early detection
biomarkers for EOC and identified nearly 100 candidate CpGs
for EOC risk (12–15). To date, only two CpGs, cg10061138 and
cg10636246, were consistently observed across different stud-
ies (12–15). The lack of consistent findings may reflect the
small sample sizes of prior studies (200-400 cases), an inad-
equate consideration of potential confounders and reverse
causation.

DNA methylation is impacted by both environmental factors
and genetic factors (6). High-throughput methylome profiling
in both twin and familial studies has shown that methylation
levels for a large number of CpGs are heritable (16, 17).
Furthermore, several studies (18, 19) have revealed a large
number of methylation quantitative trait loci (meQTL) in
white blood cells. These results suggest that DNA methylation
levels could be partially predicted by genetic variants. Indeed,
meQTL single-nucleotide polymorphisms (SNP) appear to
predict DNA methylation levels in white blood cells and the
predicted methylation levels associated with disease risk (20,
21). However, these studies only used single meQTL SNPs to
predict methylation levels for each CpG site. The prediction
accuracy is low because meQTL SNPs explain only a small
proportion of variance. In this study, we used a novel approach

to overcome this limitation by building and validating statis-
tical models to predict methylation levels based on multiple
genetic variants in reference datasets. The prediction models
were then applied to genetic data from 22,406 cases and
40,941 controls to test the hypothesis that genetically predicted
DNA methylation is associated with EOC risk. This approach
could overcome the selection bias and reverse causation in
conventional epidemiologic studies of DNA methylation and
disease because alleles are randomly assigned during gamete
formation.

Materials and Methods
Building DNA methylation prediction models using data from
the Framingham Heart Study

Genome-wide DNA methylation and genotype data from
white blood cell samples from individuals in the Framingham
Heart Study (FHS) Offspring Cohort were obtained from
dbGaP (accession numbers phs000724 and phs000342, respec-
tively). Detailed descriptions of the FHS Offspring Cohort have
been previously reported (22). Genotyping was conducted
using the Affymetrix 500K mapping array and imputation was
performed with the1000 Genome Phase I (version 3) data as
reference. Only SNPs with a minor allele frequency (MAF) of
�0.05 and an imputation quality (R2) of �0.80 were used to
build prediction models. Genome-wide DNA methylation pro-
filing was generated using the Illumina HumanMethylation450
BeadChip. We used the R package "minfi" (23) to filter low-
quality methylation probes, evaluate cell type composition for
each sample, and estimate methylation beta-values. Methyla-
tion data were then quantile-normalized across samples, rank-
normalized to remove potential outliers, and then regressed on
covariates including age, sex, cell-type composition, and top
ten principal components (PC) to eliminate potential experi-
mental confounders and population structure. Finally, 1,595
unrelated individuals of European descent (883 females and
712 males, mean � SD of age: 66.3 � 9.0) with both genetic
and DNA methylation data were included in prediction model
building.

Using the elastic net method (a¼ 0.50) implemented in the R
package "glmnet" (24), we built a statistical model to predict
methylation levels for each CpG site using the SNPs within its 2
megabase (Mb) flanking region. For each model, we performed
10-fold cross-validation as internal validation and calculated the
squared value of the correlation coefficient between measured
and predicted methylation levels, that is, RFHS

2, to estimate
prediction performance.
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Evaluationofmodel performance using data from theWomen's
Health Initiative

Using data from white blood cell samples from 883 indepen-
dent healthy women of European descent from the Women's
Health Initiative (WHI), we evaluated the performance of the
established genetic prediction models. Data from the WHI sam-
ples were obtained from dbGaP (accession numbers phs001335,
phs000675, and phs000315). Genotyping was conducted using
the HumanOmniExpress and HumanOmni1-Quad array. The
data were quality controlled and imputed using similar criteria
and procedures as those described for the FHS data. The Illumina
HumanMethylation450BeadChipwasused toprofileDNAmeth-
ylation and the data were then processed using the same pipeline
as that for the FHSdata. The predictionmodels established in FHS
were applied to the genetic data in WHI to predict methylation
levels at each CpG site for each sample. Then, the predicted and
measuredmethylation levels for each CpG site were compared by
estimating the squared value of the Spearman correlation coef-
ficient, that is, RWHI

2.
We used the following criteria to select prediction models for

association analyses: (i) a prediction RFHS
2 of �0.01 (correla-

tion between measured and predicted methylation levels of
�0.10) in the FHS; (ii) a RWHI

2 of �0.01 in the WHI; and (iii)
methylation probes on the HumanMethylation450K BeadChip
not overlapping with any SNP included in the dbSNP database
(Build 151; ref. 25), considering that SNPs on the probes may
have a potential impact on the methylation level estimation
(19). In total, models for 63,000 CpGs met these requirements
and were included in the downstream association analyses for
EOC risk.

Association between genetically predicted DNA methylation
and EOC risk

MetaXcan (26) was used to estimate the associations between
genetically predicted methylation levels and EOC risk. The meth-
odology of MetaXcan has been described elsewhere (26, 27).
Briefly, the following formulawas used to evaluate the association
Z-score:

Zm � Ss2Modelm wsm
ŝs

ŝm

b̂s

seðb̂sÞ
In the formula, wsm represents the weight of SNP s on the

methylation level of the CpG site m, estimated by the prediction
model. ŝs and ŝm are the evaluated variances of SNP s and the
predicted methylation level at CpG site m, respectively. b̂s and
seðb̂sÞ represent the beta coefficient and standard error of SNP s on
EOC risk, respectively. For this study, the correlations between
predicting SNPs for all CpGs were evaluated using the data from
European participants in the 1000 Genomes Project Phase 3.

Beta coefficient b̂s and standard error seðb̂sÞ for the associa-
tion between SNP s and EOC risk were obtained from the
Ovarian Cancer Association Consortium (OCAC), which
includes 22,406 EOC cases and 40,941 controls of European
ancestry (3). Details of this consortium have been described
elsewhere (3). For patients with EOC, some may have had neo-
adj chemotherapy before surgery. They were not included in
subtype analyses but included in the analyses for overall EOC
risk (3). Cases were classified as one of five histotypes: high-
grade serous (n ¼ 13,037), endometrioid (n ¼ 2,810), mucin-
ous invasive (n ¼ 1,417), clear cell (n ¼ 1,366), or low-grade

serous (n ¼ 1,012). In addition, there were 2,764 EOC cases
that could not be categorized into any histotypes. Genotyping
was conducted using OncoArray and other GWAS arrays, fol-
lowed by imputation, with the 1000 Genomes Project Phase 3
as reference. Association analyses were conducted within each
dataset (different GWAS arrays) and the results were combined
by a fixed-effect inverse-variance meta-analysis. Among the
751,157 SNPs included in the prediction models for 63,000
CpGs, summary statistics for associations between 751,031
(99.98%) of these SNPs and EOC risk were available from the
OCAC. A total of 62,938 CpGs, corresponding to these 751,031
SNPs, were included in the final analyses. This study was
approved by the OCAC Data Access Coordination Committee.

For risk analyses in OCAC, we used a Bonferroni-corrected
threshold of P < 7.94 � 10�7 (0.05/62,938) for statistical signif-
icance in assessing the association between each of the 62,938
CpGs and EOC risk. Associations of predicted methylation and
EOC risk identified in theOCACdatawere further evaluated using
the summary statistics of two GWAS studies of ovarian cancer in
theUKBiobank (28).However, the sample size of the EOCcases is
very small, with only 440 histologically diagnosed and 579 self-
reported ovarian cancer cases among nearly 337,000 unrelated
individuals of European descent. GWAS analyses were conducted
using a linear regression model. The summary statistics data are
available at https://sites.google.com/broadinstitute.org/ukbbg
wasresults/home.

We estimated whether the identified associations of predicted
methylationwith EOC riskwere independent of GWAS-identified
EOC susceptibility variants. For each SNP included in the pre-
diction model, we used GCTA-COJO (29) to evaluate the b̂sand
(̂bs) with EOC risk after adjusting for theGWAS-identified variants
for EOC. Then, we reconducted the MetaXcan analyses to inves-
tigate the associations of the predicted methylation levels with
EOC risk conditioning on the GWAS-identified EOC risk variants.
We also performed stratification analyses by six EOC histotypes
and estimated the heterogeneity across histotype groups by using
Cochran Q test.

Functional annotation of methylation markers
Using ANNOVAR (30), all 62,938 investigated CpGs were

classified into 11 functional categories: upstream, transcription
start site upstream 1,500 bp (TSS1500), TSS200, 50-untranslat-
ed region (UTR), exonic, intronic, 30-UTR, downstream, inter-
genic, noncoding RNA (ncRNA) exonic and ncRNA intronic.

Correlation analyses of DNAmethylation with gene expression
in white blood cells

For those 89CpGswith predictedmethylation levels associated
with EOC risk, we investigated those methylation levels in rela-
tion to the expression levels of genes flanking these CpGs. Indi-
vidual-level DNA methylation and gene expression data of white
blood cell samples from the FHS Offspring Cohort were accessed
from dbGaP (accession numbers phs000724 and phs000363).
The details of the Offspring Cohort of the FHS, the DNA meth-
ylation data and gene expression data have been described pre-
viously (22, 31). In total, 1,367 unrelated participants with both
methylation and gene expression data were included in correla-
tion analyses. A threshold of P < 0.05 was used to determine a
nominally significant correlation between methylation level and
gene expression level. In addition, using data from the FHS, we
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investigated whether themethylation of those 89 EOC-associated
CpGs could regulate the expression of 19 homologous recombi-
nation (HR) genes (32, 33).

Association analyses of genetically predicted gene expression
with EOC risk

For genes with expression levels nominally correlated with
methylation levels of CpGs that were associated with EOC, we
investigated whether genetically predicted gene expression
levels were associated with EOC risk following methods
described elsewhere (27). Briefly, genome-wide genetic and
gene expression data from 6,124 different tissue samples
(donated by 369 participants of European ancestry) included
in the Genotype-Tissue Expression (GTEx) release 6 (34) were
used to build genetic models for gene expression prediction by
following the elastic net method (27). The models were then
applied to the OCAC data to estimate the associations between
genetically predicted gene expression levels and EOC risk by
using MetaXcan (26). We used Bonferroni correction to declare
statistically significant associations.

Consistent directions of associations across methylation, gene
expression, and EOC risk

To infer potential mechanisms underlying the identified asso-
ciations between DNA methylation and EOC risk, we conducted
integrative analyses of the association results between predicted
CpGmethylation and EOC risk, correlations between CpGmeth-
ylation and gene expression, and associations between gene
expression and EOC risk. First, we examined whether the associ-
ation directions among DNA methylation, gene expression and
EOC risk were consistent. Then, we evaluated whether genetically
predicted methylation might mediate associations between gene
expression and EOC risk. Briefly, for each gene we used GCTA-
COJO (35) to generate modified summary statistics of associa-
tions between SNPs in its expression prediction models and EOC

risk after adjusting for SNPs included in the methylation predic-
tion model of its corresponding CpG site. Finally, the prediction
models of each gene were applied to the updated summary
statistics usingMetaXcan (26) to estimate the association between
genetically predicted gene expression and EOC risk conditioning
on the effects of the genetically predictedmethylation level at each
corresponding CpG site.

Results
DNA methylation prediction models

Figure 1 presents the overall workflow of this study. Data from
the FHS Offspring Cohort were used to create methylation pre-
diction models for 223,959 CpGs. Of these, 81,361 showed a
prediction performance (RFHS

2) of �0.01, representing at least a
10% correlation between predicted and measured methylation
levels. For these 81,361 CpGs, the number of SNPs in prediction
models ranged from1 to 276,with amedian of 25. Applying these
81,361 models to genetic data from the WHI, 70,269 (86.4%)
models showed a correlation coefficient between predicted and
measured methylation levels (RWHI) of >10%. Among these
70,269 CpGs, methylation probes of 7,269 on the HumanMethy-
lation450 BeadChip overlapped with SNPs, which may have
affected the estimation of the methylation levels (19). Hence,
these CpGs were excluded. The remaining 63,000 CpGs were
included in the downstream analyses.

Associations of genetically predicted DNA methylation with
EOC risk

Thepredictionmodelswere applied to thedata fromaGWASof
22,406 EOC cases and 40,941 controls included in OCAC. Sum-
mary statistics of associations between 751,031 of the 751,157
SNPs, corresponding to 62,938 of the 63,000 CpGs, and EOC risk
were available in OCAC. For these 62,938 CpGs, a high correla-
tion of prediction performance between models based on FHS

Build DNA methylation prediction models using FHS data

Conditional analyses adjusting 
for known EOC risk SNPs

Replication using UK 
Biobank data

Stratification analyses by 
EOC histotypes

External validation using WHI data

Association analyses of genetically predicted DNA methylation 
levels with EOC risk using OCAC data

Correlation between methylation and 
gene expression using FHS data

Genetically predicted gene expression and EOC
risk using GTEx and OCAC data

Functional annotation for 
EOC-associated-CpGs

The overall workflow of this study

Figure 1.

Study design flow chart.
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(RFHS
2) and WHI (RWHI

2) data was observed, with a Pearson
correlation coefficient of 0.95. This indicates that for each of these
CpGs, a same set of predicting SNPs could predict a very similar
methylation level, using either FHS or WHI data.

For most of these 62,938 CpGs, a large majority of predicting
SNPs were available in OCAC (e.g., for 94% of the investigated
CpGs, �95% of the SNPs in prediction models were available in
OCAC). Supplementary Figure S1 is the Manhattan plot present-
ing the associations between genetically predicted methylation
levels and EOC risk. Among the 62,938 CpGs, 89 were signifi-
cantly associated with EOC risk at a Bonferroni-corrected thresh-
old of P < 7.94� 10�7 (Tables 1 and 2; Supplementary Table S1).
Among these 89 CpGs, a higher predicted methylation level was
associated with an increased risk of EOC at 48 CpGs, and with a
decreased EOC risk in the other 41 CpGs. This indicates that the
methylation levels were predicted to be higher for 48 CpGs and
lower for 41 CpGs among EOC cases than among controls. For
these 89 CpGs, we also rebuilt the prediction models only using
data from females (N ¼ 833) in FHS. A very high correlation
was observed, with a Pearson correlation coefficient of 0.99,
between the prediction performance R2 values, based on data of
all FHS participants (N¼ 1,595) and those based on females only
data (N ¼ 833). In the UK Biobank data, consistent associations
were observed for 23 CpGs, including 12 at P < 0.05, and 11
additional CpGs at P < 0.10 (Supplementary Table S2). This
relatively low replication rate is not unexpected, considering the
very limited statistical power of the UK Biobank data because of a
very small number of cases (N ¼ 400–600).

Among the 89 CpGs that were associated with EOC, two reside
in a genomic region on chromosome 7 that has not yet been
reported for EOC risk (500Kb away from any GWAS-identified
EOC susceptibility variants; Table 1). Given that there are no risk
variants identified by previous GWAS on this chromosome,
associations with EOC risk conditioning on proximally located
risk variants could not be conducted. Among the remaining 87
CpGs located in nine previously identified EOC risk loci, no
associations remained significant after an adjustment for all risk
SNPs in the corresponding loci. This suggests that the associations
of these 87CpGswith EOC riskwere all driven by knownEOC risk
SNPs in these loci (Table 2; Supplementary Table S1).

Stratification analyses by EOC histotypes revealed that all
89 CpGs were associated with both serous ovarian cancer and

high-grade serous ovarian cancer. Fewer CpGs were associated
with the other histotypes, including endometrioid ovarian
cancer (cg25137403, cg14454907, and cg25708328), mucinous
ovarian cancer (cg25137403, cg14454907, cg10086659, and
cg25708328), and low-grade serous ovarian cancer (cg01572694;
Supplementary Tables S3–S4). Fourteen of these 89CpGs showed
more significant associations with the serous and the high-grade
serous ovarian cancers than with other histotypes, with a hetero-
geneity test P < 5.62 � 10�4, a Bonferroni-corrected threshold
(0.05/89; Supplementary Table S3). Among these 89 CpGs, a
significant correlation of methylation and gene expression was
identified for 91 CpG-HR gene pairs, including 22 CpGs and 11
HR genes, at a Bonferroni-corrected threshold of P < 2.96� 10�5

(0.05/1,691; Supplementary Table S5). Interestingly,methylation
levels of three CpGs, that is, cg13568213 (9q34.2), cg10900703
(10p12.31), and cg23659289 (17q21.31) showed a strong cor-
relation with the expression level of the ATM gene.

DNA methylation affecting EOC risk through regulating
expression of a neighbor gene

For those 89CpGswith predictedmethylation levels associated
with EOC risk, we conducted correlation analyses with gene
expressions for 63 pairs of CpG-gene, including 58 CpGs with
21 flanking genes that were annotated by ANNOVAR (30).
Nominally significant correlations were observed for 26 CpG-
gene pairs, including 26 CpGs and 12 genes, at P < 0.05 (Table 3;
Supplementary Table S6). Among them, the most significant
correlation was observed between the increased methylation at
the CpG cg19139618, located in the promoter region of the
SKAP1 gene, and the expression level of SKAP1, with a P value
of 2.98 � 10�15 (Table 3). In addition, increased methylation
levels at two CpGs, cg10900703 and cg04231319, located in the
introns of theMLLT10 gene, were significantly correlated with an
increased expression of MLLT10, with P values of 2.79 � 10�11

and 1.36 � 10�5, respectively. For the two CpGs located in a
putative novel locus, a higher methylation level for one of them,
cg03634833,was correlatedwith a lower expression of theADAP1
gene in this locus, with a P value of 2.99 � 10�3 (Supplementary
Table S6). As expected, methylation levels at CpGs located in
promoter regions (TSS1500 and TSS200) were more likely to be
negatively correlated with expressions of proximal genes. Nearly
all CpGs located in downstream or in 30UTR showed a negative

Table 1. Two novel methylation-EOC associations for two CpGs located at a genomic region not yet reported for EOC risk

CpG Chr Position Closest gene Classification RFHS
2a Histotype Z score OR (95% CI)b P

Overall �4.95 0.51 (0.39–0.66) 7.25 � 10�7

Serousc �4.87 0.46 (0.34–0.63) 1.13 � 10�6

High-grade serous �4.83 0.46 (0.33–0.63) 1.39 � 10�6

cg18139273 7 962,582 ADAP1 Intronic 0.01 Endometrioid �1.78 0.59 (0.33–1.06) 0.08
Mucinous �0.99 0.67 (0.30–1.49) 0.32
Clear cell �1.87 0.46 (0.21–1.04) 0.06

Low-grade serous �0.97 0.62 (0.24–1.63) 0.33
Overall �5.00 0.84 (0.79–0.90) 5.81 � 10�7

Serousc �4.85 0.83 (0.77–0.89) 1.21 � 10�6

High-grade serous �4.85 0.82 (0.76–0.89) 1.25 � 10�6

cg03634833 7 965,534 ADAP1 Intronic 0.09 Endometrioid �2.21 0.83 (0.71–0.98) 0.03
Mucinous �1.40 0.87 (0.71–1.06) 0.16
Clear cell �1.76 0.84 (0.69–1.02) 0.08

Low-grade serous �0.87 0.91 (0.73–1.13) 0.39

Abbreviation: CI, confidence interval.
aCorrelation between predicted and measured methylation levels.
bOR per SD increase in genetically predicted methylation level.
cIncluding high-grade serous and low-grade serous ovarian cancers.
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regulatory effect on expression of neighbor genes. For CpGs
residing in intronic regions, both positive and negative correla-
tions were observed.

For the 12 genes with expression levels correlated with DNA
methylation, expression prediction models were built for seven,
with a prediction performance (R2) of �0.01, using GTEx data.
Applying these seven models to the OCAC data, genetically
predicted expression levels of three genes, namelyMAPT, HOXB3,
and ABHD8, were significantly associated with EOC risk after
Bonferroni correction (Table 4). At 17q21.31 and 17q21.32,
higher predicted expression levels of MAPT and HOXB3 were
associatedwith a decreased EOC risk, with P values of 3.74� 10�4

and 2.00� 10�7, respectively. After adjusting for established EOC
risk SNPs, the associations between these two genes and EOC risk
disappeared. At 19p13.11, an increased predicted expression
level for ABHD8 was associated with an increased EOC risk, with
aP value of 9.93�10�6. Conditioning on theEOCrisk SNP in this
locus, the association disappeared as well (Table 4). Of the five
geneswithout predictionmodels, twowere previously reported to
be associated with EOC susceptibility, including SKAP1 (36) and
ARHGAP27 (37).

We integrated the results for the association between
DNA methylation and EOC risk, the correlation between DNA
methylation and gene expression, and the association between
gene expression and EOC risk. We identified consistent directions
of associations across seven CpGs, including cg18878992,
cg00480298, cg07368061, cg01572694, cg14285150,
cg24672833, and cg17941109, three genes, including MAPT,
HOXB3 and ABHD8, and EOC risk (Table 5). The mechanism
potentially underlying the associations of methylation at these
seven CpGs and EOC risk may be their regulatory function
on expression of these three genes. Among them, increased
methylation at the CpG site cg14285150 was associated with an
increased HOXB3 expression (P ¼ 8.44 � 10�5) and decreased
EOC risk (P¼ 5.53� 10�8). As expected, an increased expression
of HOXB3 was associated with a decreased EOC risk (P ¼ 2.00 �
10�7). Conditioning on SNPs included in the methylation pre-
dictionmodel for cg14285150, the association ofHOXB3 expres-
sion and EOC risk disappeared (P ¼ 0.51; Table 5).

Expression prediction models could not be built for SKAP1 at
17q21.32 and ARHGAP27 at 17q21.31 in this study. Hence, these
two genes could not be investigated in association with EOC risk.
However, higher expression levels of these two genes have been
previously reported to be associatedwith an increased risk of EOC
(36, 37). This is expected, based on the association results of DNA
methylation with EOC risk and DNA methylation with gene
expression (Table 5). For example, a higher methylation at
cg19139618 was associated with a lower expression of SKAP1
(P¼ 2.98� 10�15) and lower EOC risk (P¼ 7.08� 10�7). Hence,
the potential mechanism underlying the association between
cg19139618 and EOC risk may be the downregulation effects
on SKAP1 expression (Table 5).

Discussion
In this large study, we identified 89CpGs that were significantly

associated with EOC risk, including two CpGs located in a novel
genomic region that have not yet been reported as a susceptibility
locus for EOC. Integrating genetic, methylation, and gene expres-
sion data suggested that methylation at 12 of 89 CpGs may exert
their impacts on EOC risk through regulating the expression ofTa
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five genes. These results provide new insights into the regulatory
pathways that connect genetics, epigenetics, gene expression, and
EOC risk.

We identified two methylation markers, cg18139273 and
cg03634833, located at 7p22.3, a novel genomic region that had
not been reported as a risk locus for EOC. Both CpGs reside in the
third intron of the first transcript of the ADAP1 gene, which
encodes an ADP-ribosylation factor GTPase-activating protein
(ArfGAP) with dual PH domains 1. ADAP1 functions as a scaf-
folding protein in several signal transduction pathways. It is
highly expressed in neurons, where it has roles in neuronal
differentiation and neurodegeneration (38). This gene has also
been reported to be involved inmitochondrial function (39), and
is a target of the ErbB4 transcription factor inmammary epithelial
cells (40). In this study, we found that a higher methylation level
at cg03634833 was significantly correlated with a lower ADAP1
expression, which was associated with a nonsignificantly
decreased EOC risk. Thus, methylation at cg03634833 might be
associatedwith EOC risk through a regulatory function onADAP1
expression, or through other unidentified mechanisms.

Integrating the results of the association between DNA
methylation and EOC risk, the correlation between DNA meth-
ylation and gene expression, and the association between gene
expression and EOC risk, we observed consistent directions of
associations across 12 CpGs, five genes, and EOC risk. For the
MAPT gene (17q21.31), an increased methylation at two CpGs
located in its exons, cg18878992 and cg00480298, were asso-
ciated with a decreased MAPT expression and increased EOC
risk. For the other CpG site, cg07368061, located at the first
intron ofMAPT, its increased methylation was associated with a
higher MAPT expression and lower EOC risk. As expected, an
increased MAPT expression was associated with decreased EOC
risk. The MAPT gene has been linked to multiple neurodegen-
erative disorders, including progressive supranuclear palsy
(41), Parkinson's disease (42, 43), and Alzheimer's disease
(42). In addition, a higher expression of a MAPT protein

isoform (<70 kDa) was correlated with a lower sensitivity to
taxanes in breast cancer cells (44). Methylation of the miRNA
miR-34c-5p was shown to regulate the MAPT expression, which
was related to paclitaxel resistance in gastric cancer cells (45).

Increased methylation of three CpGs in the first intron of the
HOXB3 gene (17q21.32), cg01572694, cg14285150, and
cg24672833, were associated with an increased expression of
HOXB3 anddecreasedEOC risk. As expected, an increasedHOXB3
expression was associated with decreased EOC risk. A previous
study reported that the expression of HOXB3 was upregulated in
EOC cell lines compared with normal samples (46). However,
this study only included 5 patients and the results have not been
replicated by an independent study. On the other side, we
investigated the genetically predicted methylation levels in DNA
from white blood cells, but not in ovary or fallopian tube
epithelial cells. It is possible that the correlation between meth-
ylation levels of these CpGs and HOXB3 expression are different
in ovary epithelial cells and white blood cells. For example, in the
50UTR of HOXB3, a higher methylation at the CpG cg12910797
was significantly associated with an increased EOC risk. The
increased methylation of this CpG was not correlated with the
expression of HOXB3 in white blood cells samples from the FHS
(Spearman correlation coefficient r ¼ �0.02; P ¼ 0.43). Higher
methylation of this CpG was significantly correlated with a
decreased HOXB3 expression in ovarian serous cystadenocarci-
noma samples from theCancerGenomeAtlas (TCGA) (Spearman
correlation coefficient r ¼ �0.27; P ¼ 2.01 � 10�6; http://gdac.
broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/
OV-TP/Correlate_Methylation_vs_mRNA/nozzle.html).

The higher methylation of the CpG site cg17941109, located at
the second intron of theABHD8 gene, was associated with a lower
ABHD8 expression and a lower EOC risk. This is consistent with
the results of two recent studies that showed that a higher
expression level of this gene was associated with an increased
risk of EOC (47, 48). This gene is located at 19p13.11, a suscep-
tibility locus for both ovarian and breast cancers. Interestingly, in
our unpublished data, the increased genetically predicted meth-
ylation level at cg17941109 was associated with decreased breast
cancer risk, and the genetically predicted expression of ABHD8
was associated with an increased breast cancer risk. Increasing
evidence also suggests that this protein family (ABHD) has a
physiologic significance in metabolism and disease (49).

For theARHGAP27 gene, increasedmethylation of twoCpGs in
the promoter region, cg16281322 and cg25708777, and oneCpG
in the 30-UTR, cg07067577,were associatedwith lower expression

Table 4. Three genes with genetically predicted expression levels associated
with EOC risk

Region Gene Type Z score P Padj
a R2b

17q21.31 MAPT Protein �3.56 3.74 � 10�4 0.40 0.08
17q21.32 HOXB3 Protein �5.20 2.00 � 10�7 0.71 0.12
19p13.11 ABHD8 Protein 4.42 9.93 � 10�6 0.59 0.23
aAdjusting for the EOC risk SNPs in the corresponding locus.
bCorrelation between predicted and measured gene expression levels.

Table 3. Selecteda correlations between methylation levels at 26 CpGs and expression levels of 12 genes; data from the FHS

CpG Chr Position Classification Closest gene Rho P

cg25137403 2 177,022,172 Downstream HOXD4 �0.06 0.02
cg22211092 3 156,361,584 Downstream SSR3 0.09 9.43 � 10�4

cg03634833 7 965,534 Intronic ADAP1 �0.08 2.99 � 10�3

cg14653977 9 136,038,692 Intronic GBGT1 �0.06 0.02
cg24267699 9 136,151,359 TSS1500 ABO �0.09 8.07 � 10�4

cg10900703 10 21,824,407 Intronic MLLT10 0.18 2.79 � 10�11

cg23659289 17 43,472,725 30UTR ARHGAP27 �0.19 9.89 � 10�13

cg07368061 17 44,090,862 Intronic MAPT 0.08 2.02 � 10�3

cg19139618 17 46,504,791 Intronic SKAP1 �0.21 2.98 � 10�15

cg14285150 17 46,659,019 Intronic HOXB3 0.11 8.44 � 10�5

cg22311200 17 46,695,514 Downstream HOXB8 0.08 2.59 � 10�3

cg17941109 19 17,407,198 Intronic ABHD8 �0.06 0.03
aSelected from correlations between 26 CpGs and 12 genes. For each gene, only the most significantly correlated CpG is presented. Complete list of results for all
CpG–EOC associations is available in Supplementary Table S6.
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level of ARHGAP27 and lower EOC risk. For the SKAP1 gene, a
higher methylation at the CpG cg02957270, located at the pro-
moter region, was associated with a higher expression level and
increased EOC risk. Increased methylation of the other intronic
CpG, cg19139618, was associated with a lower SKAP1 expression
and a decreased EOC risk. In this study, the associations of
expression levels of these two genes and EOC risk could not be
investigated because the predictionmodels for them could not be
built. However, two large GWAS studies have identified these two
genes as EOC susceptibility genes with solid experimental evi-
dence (36, 37). Differential expression analyses showed a signif-
icantly higher expression of ARHGAP27 in ovarian cancer than in
normal cells (37). It is suggested that the ARHGAP27 gene may
play a role in carcinogenesis through the dysregulation of Rho/
Rac/Cdc42-like GTPases (50). The expression of SKAP1 was
significantly greater in ovarian cancer cells when compared with
primary human ovarian surface epithelial cells (36). Our study is
the first to suggest that these two genes may be associated with
EOC risk through methylation regulation.

Several epidemiologic studies have investigated the associa-
tions of CpG methylation and EOC risk in white blood cells and
tumor tissue samples (12–15). Approximately 100 CpGs have
been identified to be associatedwith EOC risk.However, only two
CpGs, cg10061138 and cg10636246, showed consistent associ-
ation directions in two or more studies. In this study, prediction
models could not be built for these two CpGs; hence, neither
could be investigated in association with EOC risk. Among the
remaining 98 reported CpGs, reliable prediction models were
built for only 20 of them and only two, cg19399532 and
cg21870884, could be replicated at P < 0.10, with the same
association directions as previously reported. Such a low replica-
tion rate is not unexpected because of several potential limitations
in traditional epidemiologic studies, which include possible false
associations because of small sample size, lack of validation in
other studies, potential confounders, and reverse causation.

The methodology of this study is similar to that of transcrip-
tome-wide association studies (TWAS), in which gene expression
prediction models are established and applied to GWAS data to
investigate genetically predicted gene expression in association
with various diseases and traits. Of the five genes identified in
this study, the expression levels of two,HOXB3 and ABHD8, were
significantly associated with EOC risk at the Bonferroni-corrected
threshold (P < 2.2 � 10�6) in our previous TWAS study for

EOC (51). The MAPT gene showed an association with EOC at
P ¼ 3.74 � 10�4 in the TWAS; however, the association did not
reach the Bonferroni-corrected threshold. For ARHGAP27 and
SKAP1, gene expression predictionmodels could not be built, and
theywere not investigated in the TWAS. Expression levels for these
two geneswere reported to be associatedwith EOC(36, 37). Some
genes identified in TWASwere not tested in this study because the
methylation prediction models could not be built for CpGs
flanking them. In addition, except DNA methylation, there are
other biological processes that regulate gene expression. The
regulation of DNAmethylation on gene expression differs accord-
ing to the locations of the CpGs. Therefore, integrating the results
of methylation and gene expression analyses may help to under-
stand the biological basis for EOC.

It would be ideal to buildmethylation predictionmodels using
data from normal ovary or fallopian tube epithelial cells, but it is
almost impossible to collect tissue samples from a large popula-
tion of healthy women. However, as demonstrated by multiple
studies, the large majority of the meQTLs identified in white
blood cells were consistently detected across different tissue types
(26, 52, 53). These results indicate that the genetically determined
methylation at many CpGs are predictable and consistent among
different tissues. Hence, it is reasonable to build methylation
prediction models using data from white blood cell samples and
then investigate predicted DNA methylation in association with
EOC. It would be ideal to validate the findings in this study by
directly measuring methylation levels in prediagnosis blood
samples in prospective studies to overcome reverse causation;
however, the majority of the samples included in this study were
collected after cancer diagnosis. It is possible that DNA methyl-
ation regulation on gene expression differs across tissues. In this
study, data in white blood cell samples were used, which is
another limitation. In the association analysis of predicted gene
expressionwith EOC risk, themodels were built using data from a
limited sample size of GTEx. Thus, the number of genes evaluated
in our study was small. More consistent associations across
methylation, gene expression, and EOC risk could be identified
with a larger sample size to build gene expression prediction
models.

Strengths of this study include the large number of samples in
the reference dataset used in model building and that the model
performance was evaluated in an independent dataset. Using
genetic variants as study instruments, we can effectively overcome

Table 5. Consistent directions of associations across CpG methylation, gene expression, and EOC risk for 12 CpGs and five genes

CpG vs. EOC risk CpG vs. Gex Gex vs. EOC risk Adjusteda Gex vs. EOC risk
CpG Chr Position Gene Classification Dir P Dir P Dir P Dir P

cg18878992 17 43,974,344 MAPT 50UTR þ 8.85 � 10�13 � 2.64 � 10�3 � 3.74 � 10�4 � 0.48
cg00480298 17 44,068,857 MAPT Exonic þ 6.39 � 10�9 � 3.98 � 10�3 � 3.74 � 10�4 � 0.65
cg07368061 17 44,090,862 MAPT Intronic � 4.26 � 10�13 þ 2.02 � 10�3 � 3.74 � 10�4 � 1.00
cg01572694 17 46,657,555 HOXB3 Intronic � 5.52 � 10�9 þ 7.49 � 10�3 � 2.00 � 10�7 � 0.82
cg14285150 17 46,659,019 HOXB3 Intronic � 5.53 � 10�8 þ 8.44 � 10�5 � 2.00 � 10�7 � 0.51
cg24672833 17 46,659,318 HOXB3 Intronic � 9.00 � 10�8 þ 5.51 � 10�3 � 2.00 � 10�7 � 0.41
cg17941109 19 17,407,198 ABHD8 Intronic � 2.88 � 10�9 � 0.03 þ 9.93 � 10�6 � 0.57
cg19139618 17 46,504,791 SKAP1 Intronic � 7.08 � 10�7 � 2.98 � 10�15 þ NAb

cg02957270 17 46,508,097 SKAP1 TSS1500 þ 4.40 � 10�12 þ 0.01 þ
cg07067577 17 43,506,829 ARHGAP27 30UTR � 6.86 � 10�14 � 1.20 � 10�3 þ NAb

cg16281322 17 43,510,478 ARHGAP27 TSS200 � 6.82 � 10�13 � 1.14 � 10�9 þ
cg25708777 17 43,510,841 ARHGAP27 TSS1500 � 4.61 � 10�13 � 4.11 � 10�8 þ
Abbreviations: Dir, direction of association/correlation; Gex, gene expression.
aAdjusting for all the predicting SNPs included in prediction models of corresponding CpGs.
bSKAP1 and ARHGAP27 are previously identified EOC-susceptibility genes.
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many limitations commonly encountered in conventional epi-
demiologic studies. In addition, this is the largest study of DNA
methylationwith EOC risk and a very stringent criterionwas used,
providing high statistical power to identify reliable associations
between genetically predicted methylation and EOC risk. Finally,
the integrative analyses of genetic, DNA methylation, and gene
expression data led to the identification of consistent evidence to
support the hypothesis that DNAmethylation could impact EOC
risk through regulating gene expression.

In summary, in the largest study conducted to date that inves-
tigates DNA methylation in association with EOC risk, we iden-
tified multiple CpGs that were significantly associated with EOC
risk and proposed that several CpGs may affect EOC risk through
regulating expression of five genes. Our study demonstrates the
feasibility of integrating multi-omics data to identify novel bio-
markers for EOC risk and brings new insight into the etiology of
this malignancy.
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