358 research outputs found

    Dahlov Ipcar Correspondence

    Get PDF
    Entries include letters typed and hand written on artistic stationery, a photographic image of Ipcar from a newspaper clipping, a page of comments (Perspective, 1970), a card with an image by her father William Zorach, letters on Alfred A. Knopf publisher stationery, and a biography by Borzoi Books for Young Peopl

    Development of a high-resolution NGS-based HLA-typing and analysis pipeline

    Get PDF
    The human leukocyte antigen (HLA) complex contains the most polymorphic genes in the human genome. The classical HLA class I and II genes define the specificity of adaptive immune responses. Genetic variation at the HLA genes is associated with susceptibility to autoimmune and infectious diseases and plays a major role in transplantation medicine and immunology. Currently, the HLA genes are characterized using Sanger- or next-generation sequencing (NGS) of a limited amplicon repertoire or labeled oligonucleotides for allele-specific sequences. High-quality NGS-based methods are in proprietary use and not publicly available. Here, we introduce the first highly automated open-kit/open-source HLA-typing method for NGS. The method employs in-solution targeted capturing of the classical class I (HLA-A, HLA-B, HLA-C) and class II HLA genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). The calling algorithm allows for highly confident allele-calling to three-field resolution (cDNA nucleotide variants). The method was validated on 357 commercially available DNA samples with known HLA alleles obtained by classical typing. Our results showed on average an accurate allele call rate of 0.99 in a fully automated manner, identifying also errors in the reference data. Finally, our method provides the flexibility to add further enrichment target regions

    Hardy spaces of the conjugate Beltrami equation

    Get PDF
    We study Hardy spaces of solutions to the conjugate Beltrami equation with Lipschitz coefficient on Dini-smooth simply connected planar domains, in the range of exponents 1<1<\infty. We analyse their boundary behaviour and certain density properties of their traces. We derive on the way an analog of the Fatou theorem for the Dirichlet and Neumann problems associated with the equation div(σu)=0{div}(\sigma\nabla u)=0 with LpL^p-boundary data

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    CD4 T Cell Cytokine Differentiation: The B Cell Activation Molecule, OX40 Ligand, Instructs CD4 T Cells to Express Interleukin 4 and Upregulates Expression of the Chemokine Receptor, Blr-1

    Get PDF
    This report investigates the role of OX40 ligand (OX40L) and its receptor, OX40, expressed on activated B and T cells, respectively, in promoting the differentiation of T helper type 2 (Th2) CD4 T cells. These molecules are expressed in vivo by day 2 after priming with T cell– dependent antigens. Their expression coincides with the appearance of immunoglobulin (Ig)G switch transcripts and mRNA for interleukin (IL)-4 and interferon (IFN)-γ, suggesting that this molecular interaction plays a role in early cognate interactions between B and T cells. In vitro, we report that costimulation of naive, CD62Lhigh CD4 T cells through OX40 promotes IL-4 expression and upregulates mRNA for the chemokine receptor, blr-1, whose ligand is expressed in B follicles and attracts lymphocytes to this location. Furthermore, T cell stimulation through OX40 inhibits IFN-γ expression in both CD8 T cells and IL-12–stimulated CD4 T cells. Although this signal initiates IL-4 expression, IL-4 itself is strongly synergistic. Our data suggest that OX40L on antigen-activated B cells instructs naive T cells to differentiate into Th2 cells and migrate into B follicles, where T cell–dependent germinal centers develop

    Quasiparticle excitations in relativistic quantum field theory

    Full text link
    We analyze the particle-like excitations arising in relativistic field theories in states different than the vacuum. The basic properties characterizing the quasiparticle propagation are studied using two different complementary methods. First we introduce a frequency-based approach, wherein the quasiparticle properties are deduced from the spectral analysis of the two-point propagators. Second, we put forward a real-time approach, wherein the quantum state corresponding to the quasiparticle excitation is explicitly constructed, and the time-evolution is followed. Both methods lead to the same result: the energy and decay rate of the quasiparticles are determined by the real and imaginary parts of the retarded self-energy respectively. Both approaches are compared, on the one hand, with the standard field-theoretic analysis of particles in the vacuum and, on the other hand, with the mean-field-based techniques in general backgrounds.Comment: 53 pages, 4 figures. Version accepted for publication in Ann. Phy

    PTF10fqs: A Luminous Red Nova in the Spiral Galaxy Messier 99

    Get PDF
    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local Universe (distance less than 200 Mpc). Here, we report the discovery of PTF10fqs, a transient in the luminosity "gap" between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of Mr = -12.3, red color (g-r = 1.0) and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width H (930 km/s) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to thatof M85OT2006-1, SN2008S, and NGC300OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF10fqs shows some evidence of a broad feature (around 8600A) that may suggest very large velocities (10,000 km/s) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring and statistics (e.g. disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.Comment: 12 pages, 12 figures, Replaced with published versio

    Grow With the Challenge – Microbial Effects on Epithelial Proliferation, Carcinogenesis, and Cancer Therapy

    Get PDF
    The eukaryotic host is in close contact to myriads of resident and transient microbes, which influence the crucial physiological pathways. Emerging evidence points to their role of host–microbe interactions for controlling tissue homeostasis, cell fate decisions, and regenerative capacity in epithelial barrier organs including the skin, lung, and gut. In humans and mice, it has been shown that the malignant tumors of these organs harbor an altered microbiota. Mechanistic studies have shown that the altered metabolic properties and secreted factors contribute to epithelial carcinogenesis and tumor progression. Exciting recent work points toward a crucial influence of the associated microbial communities on the response to chemotherapy and immune-check point inhibitors during cancer treatment, which suggests that the modulation of the microbiota might be a powerful tool for personalized oncology. In this article, we provide an overview of how the bacterial signals and signatures may influence epithelial homeostasis across taxa from cnidarians to vertebrates and delineate mechanisms, which might be potential targets for therapy of human diseases by either harnessing barrier integrity (infection and inflammation) or restoring uncontrolled proliferation (cancer)

    Transatlantic transport of pollution and its effects on surface ozone in Europe and North America

    Get PDF
    We examine the transatlantic transport of anthropogenic ozone and its impact on surface ozone in Europe and North America by using a 5-year (1993–1997) simulation with the GEOS-CHEM global three-dimensional model of tropospheric chemistry. Long-term time series of ozone and CO at Mace Head (Ireland) and Sable Island (Canada) are used to evaluate transatlantic transport in the model. North American anthropogenic emissions contribute on average 5 ppbv to surface ozone at Mace Head, and up to 10–20 ppbv during transatlantic transport events, which are forerunners of broader events in Europe. These events are associated with low-level westerly flow driven by an intense Icelandic low between Iceland and the British Isles. North American influence on ozone at Mace Head is strongly correlated with the North Atlantic Oscillation (NAO), implying that the NAO index can be used to forecast transatlantic transport of North American pollution to Europe. European anthropogenic emissions contribute on average less than 2 ppbv to surface ozone at Sable Island but up to 5–10 ppbv during transatlantic transport events. These events are associated with low-level easterly flow established by anomalous low pressure at 45°N over the North Atlantic. North American anthropogenic emissions enhance surface ozone in continental Europe by 2–4 ppbv on average in summer and by 5–10 ppbv during transatlantic transport events; transport in the boundary layer and subsidence from the free troposphere are both important mechanisms. We find in the model that 20% of the violations of the European Council ozone standard (55 ppbv, 8-hour average) in the summer of 1997 over Europe would not have occurred in the absence of anthropogenic emissions from North America. North American influence on surface ozone in Europe is particularly strong at the thresholds used for the European standards (55–65 ppbv)
    corecore