990 research outputs found

    Dynamical renormalization group approach to relaxation in quantum field theory

    Full text link
    The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG).Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths.Comment: LaTex, 27 pages, 2 .ps figure

    Non-equilibrium dynamics in quantum field theory at high density: the tsunami

    Get PDF
    The dynamics of a dense relativistic quantum fluid out of thermodynamic equilibrium is studied in the framework of the Phi^4 scalar field theory in the large N limit. The time evolution of a particle distribution in momentum space (the tsunami) is computed. The effective mass felt by the particles in such a high density medium equals the tree level mass plus the expectation value of the squared field. The case of negative tree level squared mass is particularly interesting. In such case dynamical symmetry restoration as well as dynamical symmetry breaking can happen. Furthermore, the symmetry may stay broken with vanishing asymptotic squared mass showing the presence of out of equilibrium Goldstone bosons. We study these phenomena and identify the set of initial conditions that lead to each case. We compute the equation of state which turns to depend on the initial state. Although the system does not thermalize, the equation of state for asymptotically broken symmetry is of radiation type. We compute the correlation functions at equal times. The two point correlator for late times is the sum of different terms. One stems from the initial particle distribution. Another term accounts for the out of equilibrium Goldstone bosons created by spinodal unstabilities when the symmetry is asymptotically broken.Both terms are of the order of the inverse of the coupling for distances where causal signals can connect the two points. The contribution of the out of equilibrium Goldstones exhibits scaling behaviour in a generalized sense.Comment: LaTex, 49 pages, 15 .ps figure

    Large scale magnetogenesis from a non-equilibrium phase transition in the radiation dominated era

    Full text link
    We study the generation of large scale primordial magnetic fields by a cosmological phase transition during the radiation dominated era. The setting is a theory of N charged scalar fields coupled to an abelian gauge field, that undergoes a phase transition at a critical temperature much larger than the electroweak scale. The dynamics after the transition features two distinct stages: a spinodal regime dominated by linear long-wavelength instabilities, and a scaling stage in which the non-linearities and backreaction of the scalar fields are dominant. This second stage describes the growth of horizon sized domains. We implement a recently introduced formulation to obtain the spectrum of magnetic fields that includes the dissipative effects of the plasma. We find that large scale magnetogenesis is very efficient during the scaling regime. The ratio between the energy density on scales larger than L and that in the background radiation r(L,T) = rho_B(L,T)/rho_{cmb}(T) is r(L,T) \sim 10^{-34} at the Electroweak scale and r(L,T) \sim 10^{-14} at the QCD scale for L \sim 1 Mpc. The resulting spectrum is insensitive to the magnetic diffusion length. We conjecture that a similar mechanism could be operative after the QCD chiral phase transition.Comment: LaTex, 25 pages, no figures, to appear in Phys. Rev.

    Space-time evolution of heavy sterile neutrinos in cascade decays

    Get PDF
    Heavy sterile-like neutrinos may be produced resonantly from the decay of pseudoscalar mesons and may decay into several different channels in a cascade Φ→Lανh;νh→{X}\Phi \rightarrow L^\alpha \nu_h;\nu_h\rightarrow \{X\}. In general these are rare events with displaced vertices. We provide a non-perturbative and manifestly unitary framework that describes the cascade decay and yields the space-time evolution of the probabilities for sterile neutrinos, final states and the total number of events at a far detector. The results are general, valid for Dirac or Majorana neutrinos and only input the total decay rates and branching ratios for the production and decay channels. We apply the general results to two examples of "visible" decay: i) K+→e+νh→(e+)e+e−νeK^+\rightarrow e^+ \nu_h\rightarrow (e^+) e^+ e^- \nu_e via a standard model charged current vertex and ii) the radiative decay K+→μ+νh→(μ+)νaγK^+\rightarrow \mu^+ \nu_h \rightarrow (\mu^+) \nu_a \gamma. For this latter cascade process we find substantial corrections to previous assessments within the parameter space argued to solve the anomalous excess of electron-like events at MiniBooNE. These large corrections may help relieve the tension with recent experimental bounds on radiative decays of heavy sterile neutrinos.Comment: 22 pages, 7 fig

    Real-Time Dynamics with Fermions on a Lattice

    Get PDF
    The 1+1 dimensional abelian Higgs model with fermions is a toy model for the theory of electroweak baryogenesis. We study the dynamics of the model with axially coupled fermions in real-time. The model is defined on a spacetime lattice to preserve gauge invariance and to obtain numerical stability in a simple way. We take into account the phenomenon of lattice fermion doubling. The dynamics is approximated by treating the inhomogeneous Bose fields classically, which is justified in a large N_f approximation. The back reaction on the Bose fields due to fermion field fluctuations is calculated using a mode function expansion. We discuss and present numerical results for the response of fermions to sphaleron transitions, the renormalizability of the effective equations of motion and non-perturbative dynamics in the framework of non-equilibrium quantum field theory. The long-time behaviour of the system is discussed and we speculate about applications to finite density calculations.Comment: 34 pages + 20 eps figures, improved presentation, discussion of the figures and figure captions expanded, references added; to appear in Nucl.Phys.
    • …
    corecore