703 research outputs found
DIVERSet JAG compounds inhibit topoisomerase II and are effective against adult and pediatric high-grade gliomas
High-grade gliomas (HGGs) are aggressive primary brain tumors with local invasive growth and poor clinical prognosis in both adult and pediatric patients. Clinical response is compounded by resistance to standard frontline antineoplastic agents, an absence of novel therapeutics, and poor in vitro models to evaluate these. We screened a range of recently identified anticancer compounds in conventional adult, pediatric, and new biopsy-derived HGG models. These in vitro lines showed a range of sensitivity to standard chemotherapeutics, with varying expression levels of the prognostic markers hypoxia-induced factor (HIF) 1α and p53. Our evaluation of lead DIVERSet library compounds identified that JAG-6A, a compound that was significantly more potent than temozolomide or etoposide, was effective against HGG models in two-dimensional and three-dimensional systems; mediated this response by the potent inhibition of topoisomerase Iiα; remained effective under normoxic and hypoxic conditions; and displayed limited toxicity to non-neoplastic astrocytes. These data suggest that JAG-6A could be an alternative topoisomerase IIα inhibitor and used for the treatment of HGG.Funding Agency
Brain Tumour Research
Ollie Young Foundation
Portuguese Foundation for Science and Technology
IF/00614/2014
FCT exploratory grant
IF/00614/2014/CP12340006
FCT Research Center Grant
UID/BIM/04773/2013CBMR1334info:eu-repo/semantics/publishedVersio
Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target
Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.Mª Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript
Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes
It has been shown that a subset of human cancers, notably, melanoma and hepatocellular carcinoma (HCC) are auxotrophic for arginine (Arg), because they do not express argininosuccinate synthetase (ASS), the rate-limiting enzyme for the biosynthesis of arginine from citrulline. These ASS-negative cancer cells require Arg from extracellular sources for survival. When they are exposed to recombinant Arg-degrading enzymes, e.g. arginine deiminase (ADI) or arginase, they die because of Arg starvation; whereas normal cells which express ASS are able to survive. A pegylated ADI (ADI-PEG20) has been developed for clinical trials for advanced melanoma and HCC; and favorable results have been obtained. ADI-PEG20 treatment induces autophagy in auxotrophic cancer cells leading to cell death. Clinical studies in melanoma patients show that re-expression of ASS is associated with ADI-PEG20 resistance. ADI-PEG20 treatment down-regulates the expression of HIF-1α but up-regulates c-Myc in culture melanoma cells. Induction of ASS by ADI-PEG20 involves positive regulators c-Myc and Sp4 and negative regulator HIF1α. Since both HIF-1α and c-Myc play important roles in cancer cell energy metabolism, together these results suggest that targeted cancer cell metabolism through modulation of HIF-1α and c-Myc expression may improve the efficacy of ADI-PEG20 in treating Arg auxotrophic tumors
Overcoming cisplatin resistance by mTOR inhibitor in lung cancer
BACKGROUND: Cisplatin resistance is complex and involves several different mechanisms. Employing cDNA microarray analysis, we have found that cisplatin resistant cells share the common characteristic of increase in ribosomal proteins and elongation factors. We hypothesize that in order to survive cisplatin treatment, cells have to synthesize DNA repair proteins, antiapoptotic proteins and growth-stimulating proteins. Thus, by blocking the translation of these proteins, one should be able to restore cisplatin sensitivity. We have studied the role of CCI-779, an ester analog of rapamycin which is known to inhibit translation by disabling mTOR, in restoring cisplatin sensitivity in a panel of cisplatin resistant cell lines. We have also determined the role of CCI-779 in P-gp1 and MRP1 mediated resistance. RESULTS: Our data show that CCI-779 possess antiproliferative effects in both cisplatin sensitive and resistant cell lines, but shows no effect in P-gp1 and MRP1 overexpressing cell lines. Importantly, CCI-779 at 10 ng/ml (less that 10% of the growth inhibitory effect) can increase the growth inhibition of cisplatin by 2.5–6 fold. Moreover, CCI-779 also enhances the apoptotic effect of cisplatin in cisplatin resistant cell lines. In these resistant cells, adding CCI-779 decreases the amount of 4E-BP phosphorylation and p-70S6 kinase phosphorylation as well as lower the amount of elongation factor while cisplatin alone has no effect. However, CCI-779 can only reverse P-gp mediated drug resistance at a higher dose(1 ug/ml). CONCLUSION: We conclude that CCI-779 is able to restore cisplatin sensitivity in small cell lung cancer cell lines selected for cisplatin resistance as well as cell lines derived from patients who failed cisplatin. These findings can be further explored for future clinical use. On the other hand, CCI-779 at achievable clinical concentration, has no growth inhibitory effect in P-gp1 or MRP1 overexpressing cells. Furthermore, CCI-779 also appears to be a weak MDR1 reversal agent. Thus, it is not a candidate to use in MDR1 or MRP1 overexpressing cells
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging
Selectivity of a thiosemicarbazonatocopper(II) complex towards duplex RNA. Relevant noncovalent interactions both in solid state and solution
Thiosemicarbazones and their metal derivatives have long been screened as antitumor agents, and their interactions with DNA have been analysed. Herein, we describe the synthesis and characterization of compounds containing [CuL]+ entities (HL = pyridine-2-carbaldehyde thiosemicarbazone) and adenine, cytosine or 9-methylguanine, and some of their corresponding nucleotides. For the first time, crystal structures of adenine- and 9-methylguanine-containing thiosemicarbazone complexes are reported. To the best of our knowledge, the first study on the affinity thiosemicarbazone–RNA is also provided here. Experimental and computational studies have shown that [CuL(OH2)]+ entities at low concentration intercalate into dsRNA poly(rA)·poly(rU) through strong hydrogen bonds involving uracil residues and π–π stacking interactions. In fact, noncovalent interactions are present both in the solid state and in solution. This behaviour diverges from that observed with DNA duplexes and creates an optimistic outlook in achieving selective binding to RNA for subsequent possible medical applications.Obra Social “la Caixa”
(OSLC-2012-007), Ministerio de Economía y Competitividad
and FEDER funds (CTQ2013-48937-C2-1-P, CTQ2015-70371-
REDT, MAT2012-34740 and CTQ2014-58812-C2-2-R), Junta de
Castilla y León (BU237U13), the Basque Government (IT-779-
13), Gerencia Regional de Salud, Consejería de Sanidad, Junta
de Castilla y León (GRS 1023/A/14 and GR172)
A phase 2 trial of complete resection for stage IV melanoma
BACKGROUND: On the basis of retrospective experience at individual centers, it appears that patients with stage IV melanoma who undergo complete resection have a favorable outcome compared with patients with disseminated stage IV disease. The Southwest Oncology Group (SWOG) performed a prospective trial in patients with metastatic melanoma who were enrolled before complete resection of their metastatic disease and provided prospective outcomes in the cooperative group setting. METHODS: Based on their physical examination and radiologic imaging studies, patients with a stage IV melanoma judged amenable to complete resection underwent surgery within 28 days of enrollment. All eligible patients were followed with scans (computed tomography or positron emission tomography) every 6 months until relapse and death. RESULTS: Seventy‐seven patients were enrolled from 18 different centers. Of those, 5 patients were ineligible; 2 had stage III disease alone; and 3 had no melanoma in their surgical specimen. In addition, 8 eligible patients had incompletely resected tumor. Therefore, the primary analysis included 64 completely resected patients. Twenty patients (31%) had visceral disease. With a median follow‐up of 5 years, the median relapse‐free survival was 5 months (95% CI, 3‐7 months) whereas median overall survival was 21 months (95% CI, 16‐34 months). Overall survivals at 3 and 4 years were 36% and 31%, respectively. CONCLUSIONS: In a prospective multicenter setting, appropriately selected patients with stage IV melanoma achieved prolonged overall survival after complete surgical resection. Although median relapse‐free survival was only 5 months, patients could still frequently undergo subsequent surgery for isolated recurrences. This patient population is appropriate for aggressive surgical therapy and for trials evaluating adjuvant therapy. Cancer 2011;. © 2011 American Cancer Society. One of the only prospective analyses of surgery for metastatic disease in patients with stage IV disease, this article reports on a multicenter cooperative group trial with enrollment of patients from 18 different institutions. Incorporating consistent monitoring is a hallmark of cooperative group trials.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86987/1/26111_ftp.pd
The Florida Melanoma Trial I: A Prospective Multicenter Phase I/II Trial of Postoperative Hypofractionated Adjuvant Radiotherapy with Concurrent Interferon-Alfa-2b in the Treatment of Advanced Stage III Melanoma with Long-Term Toxicity Follow-Up
Radiotherapy (RT) and interferon-alfa-2b (IFN α-2b) have individually been used for adjuvant therapy stage III melanoma with high-risk pathologic features. We hypothesized that concurrent adjuvant RT and IFN α-2b may decrease the risk of regional recurrence following surgery with acceptable toxicity. A prospective multicenter phase I/II study was conducted to evaluate hypofractionated RT with concurrent IFN. Induction IFN α-2b, 20 MU/m2/d, was administered IV ×5 consecutive days every week for 4 weeks. Next, RT 30 Gy in 5 fractions was given with concurrent IFN α-2b, 10 MU/m2 SQ 3 times per week on days alternating with RT. Subsequent maintenance therapy consisted of adjuvant IFN α-2b, 10 MU/m2 SQ 3 times per week to a total of 1 year. To fully evaluate patterns of failure, long-term follow-up was conducted for up to 10 years. A total of 29 consenting patients were enrolled between August 1997 and March 2000. The maximum (worst) grade of acute nonhematologic toxicity during concurrent RT/IFN α-2b (and up to 2 weeks post RT) was grade 3 skin toxicity noted in 2 patients (9%). Late effects were limited. Probability of regional control was 78% (95% CI: 55%–90%) at 12 months. The median follow-up (range) was 80 (51–106) months among ten survivors (43%). The median overall survival was 34.5 months while the median failure-free survival was 19.9 months. Postoperative concurrent hypofractionated RT with IFN α-2b for advanced stage III melanoma appears to be associated with acceptable toxicity and may provide reasonable in-field control in patients at high risk of regional failure
- …
