168 research outputs found

    An Exploration into the Causes and Consequences of Women as a Minority in Technical Fields

    Get PDF
    This paper examines the causes behind why fewer women enter technology fields than men. By utilizing previous published research and studies from 1994-2016, the analyses made in this paper explore the evolution of women’s interest and leadership in technology fields. The research dictates that there are not just sociological and structural causes for female adherence to entering technology fields, but the research also points to psychological causes, as well. In order to improve female representation and leadership in technology fields, it is crucial that these causes are acknowledged and addressed directly. Specifically, employers must recognize the differences between male and female employee goals and cultural and professional motivational factors. As well, while employers ought to be transparent in conversations surrounding the under-representation of women in this field, parents and teachers have a responsibility to facilitate strengthening of computer skills among young female students at home and in the classroom to improve female confidence with technology

    PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy

    Get PDF
    Cancer cells resist to the host immune antitumor response via multiple suppressive mechanisms, including the overexpression of PD-L1 that exhausts antigen-specific CD8+ T cells through PD-1 receptors. Checkpoint blockade antibodies against PD-1 or PD-L1 have shown unprecedented clinical responses. However, limited host response rate underlines the need to develop alternative engineering approaches. Here, engineered cellular nanovesicles (NVs) presenting PD-1 receptors on their membranes, which enhance antitumor responses by disrupting the PD-1/PD-L1 immune inhibitory axis, are reported. PD-1 NVs exhibit a long circulation and can bind to the PD-L1 on melanoma cancer cells. Furthermore, 1-methyl-tryptophan, an inhibitor of indoleamine 2,3-dioxygenase can be loaded into the PD-1 NVs to synergistically disrupt another immune tolerance pathway in the tumor microenvironment. Additionally, PD-1 NVs remarkably increase the density of CD8+ tumor infiltrating lymphocytes in the tumor margin, which directly drive tumor regression

    NK cells specifically TCR-dressed to kill cancer cells.

    Get PDF
    Adoptive T-cell transfer of therapeutic TCR holds great promise to specifically kill cancer cells, but relies on modifying the patient's own T cells ex vivo before injection. The manufacturing of T cells in a tailor-made setting is a long and expensive process which could be resolved by the use of universal cells. Currently, only the Natural Killer (NK) cell line NK-92 is FDA approved for universal use. In order to expand their recognition ability, they were equipped with Chimeric Antigen Receptors (CARs). However, unlike CARs, T-cell receptors (TCRs) can recognize all cellular proteins, which expand NK-92 recognition to the whole proteome. We herein genetically engineered NK-92 to express the CD3 signaling complex, and showed that it rendered them able to express a functional TCR. Functional assays and in vivo efficacy were used to validate these cells. This is the first demonstration that a non-T cell can exploit TCRs. This TCR-redirected cell line, termed TCR-NK-92, mimicked primary T cells phenotypically, metabolically and functionally, but retained its NK cell effector functions. Our results demonstrate a unique manner to indefinitely produce TCR-redirected lymphocytes at lower cost and with similar therapeutic efficacy as redirected T cells. These results suggest that an NK cell line could be the basis for an off-the-shelf TCR-based cancer immunotherapy solution. FUND: This work was supported by the Research Council of Norway (#254817), South-Eastern Norway Regional Health Authority (#14/00500-79), by OUS-Radiumhospitalet (Gene Therapy program) and the department of Oncology at the University of Lausanne

    Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel.

    Get PDF
    T-cells play a critical role in tumor immunity. Indeed, the presence of tumor-infiltrating lymphocytes is a predictor of favorable patient prognosis for many indications and is a requirement for responsiveness to immune checkpoint blockade therapy targeting programmed cell death 1. For tumors lacking immune infiltrate, or for which antigen processing and/or presentation has been downregulated, a promising immunotherapeutic approach is chimeric antigen receptor (CAR) T-cell therapy. CARs are hybrid receptors that link the tumor antigen specificity and affinity of an antibody-derived single-chain variable fragment with signaling endodomains associated with T-cell activation. CAR therapy targeting CD19 has yielded extraordinary clinical responses against some hematological tumors. Solid tumors, however, remain an important challenge to CAR T-cells due to issues of homing, tumor vasculature and stromal barriers, and a range of obstacles in the tumor bed. Protumoral immune infiltrate including T regulatory cells and myeloid-derived suppressor cells have been well characterized for their ability to upregulate inhibitory receptors and molecules that hinder effector T-cells. A critical role for metabolic barriers in the tumor microenvironment (TME) is emerging. High glucose consumption and competition for key amino acids by tumor cells can leave T-cells with insufficient energy and biosynthetic precursors to support activities such as cytokine secretion and lead to a phenotypic state of anergy or exhaustion. CAR T-cell expansion protocols that promote a less differentiated phenotype, combined with optimal receptor design and coengineering strategies, along with immunomodulatory therapies that also promote endogenous immunity, offer great promise in surmounting immunometabolic barriers in the TME and curing solid tumors

    The current status of immunotherapy for cervical cancer

    Get PDF
    BackgroundImmunotherapy has been proven effective in several tumours, hence diverse immune checkpoint inhibitors are currently licensed for the treatment of melanoma, kidney cancer, lung cancer and most recently, tumours with microsatellite instability. There is much enthusiasm for investigating this approach in gynaecological cancers and the possibility that immunotherapy might become part of the therapeutic landscape for gynaecological malignancies.Cervical cancer is the fourth most frequent cancer in women worldwide and represents 7.9% of all female cancers with a higher burden of the disease and mortality in low- and middle-income countries. Cervical cancer is largely a preventable disease, since the introduction of screening tests, the recognition of the human papillomavirus (HPV) as an etiological agent, and the subsequent development of primary prophylaxis against high risk HPV subtypes. Treatment for relapsed/advanced disease has improved over the last 5 years, since the introduction of antiangiogenic therapy. However, despite advances, the median overall survival for advanced cervical cancer is 16.8 months and the 5-year overall survival for all stages is 68%. There is a need to improve outcomes and immunotherapy could offer this possibility. Clinical trials aim to understand the best timing for immunotherapy, either in the adjuvant setting or recurrent disease and whether immunotherapy, alone or in combination with other agents, improves outcomes

    Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy

    Full text link
    Cancer immunotherapy can induce long lasting responses in patients with metastatic cancers of a wide range of histologies. Broadening the clinical applicability of these treatments requires an improved understanding of the mechanisms limiting cancer immunotherapy. The interactions between the immune system and cancer cells are continuous, dynamic, and evolving from the initial establishment of a cancer cell to the development of metastatic disease, which is dependent on immune evasion. As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients

    Editing the genome of hiPSC with CRISPR/Cas9: disease models

    Get PDF

    Organizing Pornography, Organizing Desire

    No full text
    While libraries and librarians pride themselves on their classification systems and their ability to use cataloguing systems to organize and access information, new technologies have forced changes onto the knowledge management landscape. Tagging and “trending topics” have become ubiquitous ways to organize the web, and give users a sense of control over the content presented to them. On websites like facebook.com, pornhub.com, and xhamster.com, users upload content and add tags in order for other people to find it, but are often restricted in the categories available to them. This leads to what Jodi Dean (2012) calls “communicative capitalism”, wherein users are given the feelings of freedom and democracy, but actually come across many Foucaultian surveillance mechanisms and limitations. This paper specifically focuses on the role of categories and tags for the discoverability of pornographic web content, and the impact that hegemonic categorization practices have on marginalized bodies, desires, and ideas.

    Nursing management for adult recipients of CAR T-19 therapy

    No full text

    Gene Therapy: Genetic Delivery Vectors

    No full text
    corecore