
PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy

Xudong Zhang, Chao Wang, Jinqiang Wang, Quanyin Hu, Benjamin Langworthy,  
Yanqi Ye, Wujin Sun, Jing Lin, Tianfu Wang, Jason Fine, Hao Cheng, Gianpietro Dotti, 
Peng Huang,* and Zhen Gu*

However, anti-PD-1 therapy is not effec-
tive against all types of cancer and still 
only a minority of patients benefit from 
the ICB.[2e,4] Meanwhile, most of the avail-
able humanized antibodies are produced 
from mice, which require complicated 
design and isolation.[5] As a result, the cost 
of checkpoint antibody therapy remains 
unaffordable for many patients.[5b,6] There-
fore, alternative approaches antagonizing 
the PD-1/PD-L1 inhibitor axis need to be 
exploited.[7]

Natural cell membrane derived vesicles 
such as exosomes, macrovesicles, and cell 
membrane extruded vesicles hold great 
promise for biomedicine.[8] Similarly, 
bioengineering strategies are promising 
ways for the enhancement of anticancer 
immunity.[9] Herein, we engineered cell 
membrane derived nanovesicles (NVs) to 

display PD-1 receptors, which enhance the cancer immuno-
therapy through disrupting the PD-1/PD-L1 immune inhibitory 
axis (Figure 1a). The PD-1 NVs can bind to the surface of tumor 
cells and achieve PD-L1 blockade (Figure 1a–c). This blockade 
is expected to effectively revert the exhausted tumor antigen-
specific CD8+ T cells to attack the tumor cells. In addition, the 
NVs can also serve as carriers for other therapeutics to perform 
combination delivery. Indoleamine 2,3-dioxygenase (IDO) is 
an immunosuppressive molecule overexpressed by tumor and 
DC cells (IDO+ DCs) to limit the proliferation and function of 

Cancer cells resist to the host immune antitumor response via multiple 
suppressive mechanisms, including the overexpression of PD-L1 that 
exhausts antigen-specific CD8+ T cells through PD-1 receptors. Checkpoint 
blockade antibodies against PD-1 or PD-L1 have shown unprecedented clinical 
responses. However, limited host response rate underlines the need to develop 
alternative engineering approaches. Here, engineered cellular nanovesicles 
(NVs) presenting PD-1 receptors on their membranes, which enhance 
antitumor responses by disrupting the PD-1/PD-L1 immune inhibitory axis, 
are reported. PD-1 NVs exhibit a long circulation and can bind to the PD-L1 
on melanoma cancer cells. Furthermore, 1-methyl-tryptophan, an inhibitor of 
indoleamine 2,3-dioxygenase can be loaded into the PD-1 NVs to synergistically 
disrupt another immune tolerance pathway in the tumor microenvironment. 
Additionally, PD-1 NVs remarkably increase the density of CD8+ tumor infiltrating 
lymphocytes in the tumor margin, which directly drive tumor regression.

Cancer immunotherapy aims to leverage the human immune 
system to eliminate cancer cells.[1] Among them, immune check-
point blockade (ICB) targeting the programmed death-1 (PD-1)/
programmed death-ligand 1 (PD-L1) pathway induces remarkable 
clinical responses in various types of cancer, such as melanoma, 
renal cell carcinoma, nonsmall cell lung cancer, and bladder 
cancer.[2] PD-L1 is the ligand of PD-1 receptor and is upregulated 
in cancer cells and immune cells to inhibit the effector T cells.[3] 
Therefore, blocking the interaction between PD-1 and PD-L1 
by antibodies boosts the immune response against cancer cells. 
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effector T cells.[10] Here we encapsulated 1-methyl-tryptophan 
(1-MT), a small molecule inhibitor of IDO into PD-1 NVs to 
simultaneously block the PD-1/PD-L1 axis and overcome the 
inhibitory effects of IDO on effector T cells within the tumor 
microenvironment (TME) (Figure 1c).[11]

To prepare PD-1 NVs, we established HEK 293T cells that 
stably express the mouse PD-1 receptor on the cell mem-
brane. HEK 293T cell line has been widely used in cell biology 

research and biotechnology industry because it can be robustly 
transfected and produces high amount of recombinant pro-
teins.[12] DsRed protein-tag was included in the C-terminal por-
tion of PD-1 receptor protein, which made the protein-tag close 
to the inner leaflet of cell membranes, while the functional 
domain of the receptors is extracellular (Figure 1a). Therefore, 
we cloned the mouse PD-1 receptor cDNA into a mammalian 
expression vector. The transfected HEK 293T cells were selected 

Figure 1. Schematic illustration and characterization of PD-1 blockade cellular NVs for cancer immunotherapy. a) Schematic illustration shows the 
praparation of PD-1 NVs loaded with 1-MT. i) Engineering of HEK 293T cell line stably expressing mouse PD-1 receptors on the cell membranes. ii) 
Harvesting of the cell membrane expressing PD-1 receptors. iii) Preparation of PD-1 NVs through extrusion. iv) Loading 1-MT into PD-1 NVs. b) PD-L1 
exhausts CD8+ T cells by interacting with PD-1 receptors. The expression of IDO is induced by Treg cells, which inhibits the activity of CD8+ T cells. 
MHC-I: major histocompatibility complex class I; TCR: T cell receptor; CTLA4: cytotoxic T-lymphocyte associated protein 4. c) PD-L1 blockade by PD-1 
NVs reverts the exhausted CD8+ cells to attack tumor cells. The release of IDO inhibitor 1-MT also reverts the exhausted CD8+ T cells. d) Establishment 
of HEK 293T cell line stably expressing mouse PD-1 on cell membranes. WGA Alexa-Fluor 488 dye was used to label cell membrane. Scale bar: 10 µm. 
e) The TEM image showed the shape and size of PD-1 NVs. Scale bar: 100 nm. f) Cryoscanning electron microscopy (CSEM) image showed the natural 
shape of the PD-1 NVs (Scale bar: 100 nm). g) The confocal image indicated the existence of DsRed-PD-1 NVs by the red spots. Scale bar: 1 µm. h)
The size distribution of PD-1 NVs measured by dynamic light scattering (DLS) analysis. i) Western blot assay exhibited the expression of mouse PD-1
(mPD-1) receptors on the NVs and whole cell lysate (WCLs) of the stable cell line. Na+K+ ATPase was used as a loading control.



with hygromycin B to establish a stable cell line. Notably, the 
death receptor PD-1 was mainly expressed and localized on the 
cell membranes (Figure 1d). Under the selection pressure of 
hygromycin B, the cell line continued to express DsRed PD-1 
receptors for more than twenty passages (Figure S1, Supporting 
Information). Furthermore, we labeled the cell membranes with 
Alexa-Fluor 488 conjugated wheat germ agglutinin (WGA) to 
confirm the localization of the PD-1 receptors. As expected, the 
red fluorescence o f D sRed p rotein c olocalized w ith g reen fl uo-
rescence of WGA Alexa-Fluor 488 dye on the cell membranes 
(Figure 1d).

Next, the engineered HEK 293T cells were cultured and 
lyzed to isolate the cell membranes. The cell membrane vesicles 
expressing PD-1 receptors were prepared by a serial extrusion of 
vesicles through 0.8 and 0.22 µm pore-sized polycarbonate mem-
brane filters.[13] A fter e xtrusion t hrough t he 0 .8 µm p ore-sized 
polycarbonate membrane filters, major cell membrane vesicles 
(MVs) were obtained. The red-light spots in the confocal image 
demonstrated the existence of DsRed-PD-1 on MVs (Figure S2a, 
Supporting Information). The size distribution of MVs was meas-
ured by the dynamic light scattering (DLS) analysis (Figure S2b,  
Supporting Information). The MVs were then extruded through 
0.22 µm pore-sized polycarbonate membrane filters. T he h ar-
vested NVs were further purified by a density gradient ultracen-
trifugation.[13] Next, we characterized the morphology of the NVs 
by electron microscopy. The negatively stained NVs revealed that 
they were closed vesicles using transmission electron micros-
copy (TEM) (Figure 1e). The NVs were also scanned by the cry-
oscanning electron microscopy (CSEM), which showed that the 
NVs had a spherical shape (Figure 1f). The zeta potential of the 
NVs was determined as −10 mV (Figure S2c, Supporting Infor-
mation). Moreover, the expression of PD-1 receptors on the NVs 
was detected using confocal imaging and western blot. The con-
focal image exhibited red-colored spots indicating the existence 
of DsRed-PD-1 NVs (Figure 1g). DLS analysis showed that the 
average diameter of NVs was around 90–100 nm (Figure 1h).  
Additionally, western blot analysis indicated that the puri-
fied N Vs d isplay t he P D-1 r eceptors ( Figure 1 i). To v erify t hat 
whether the PD-1 receptors maintained an outside-out orienta-
tion on NV surfaces, we performed an immunoprecipitation 
assay (IP). It was demonstrated that the PD-1 antibody pulled 
down the majority of PD-1 NVs, which demonstrated that PD-1 
receptors have a correct outside-out orientation on the most 
PD-1 NVs (Figure S3, Supporting Information).

Cancer cells exhaust antigen-specific CD8+ T cells through 
overexpression of PD-L1 ligands that interact with PD-1 
receptors.[2a] To investigate whether PD-1 NVs bind to melanoma 
cells, we incubated the PD-1 NVs with B16F10 melanoma cells 
in vitro. DsRed proteins fused with PD-1 receptors provided 
red fluorescence, which was used as a fluorescent signal label 
of the PD-1 NVs. WGA Alexa-Fluor 488 dye was used to stain 
the cell membranes of the B16F10 melanoma cells. Remark-
ably, we observed that PD-1 NVs effectively bound around the 
cell membrane surface of B16F10 cells after incubation for 
2 h (Figure 2a). In contrast, Cy5.5 labeled the free NVs had 
low membrane binding affinity (Figure 2a). In addition, we 
also detected the interaction between PD-1 NVs and dendritic 
cells (DCs). PD-1 NVs were incubated with bone marrow-
derived DCs (BMDCs) for 2 h. The confocal image showed that  

DsRed-PD-1 NVs could effectively bind and be internalized by 
the BMDCs after 2 h (Figure 2b). To investigate whether the 
binding of PD-1 NVs on the B16F10 cells was through the 
interaction between PD-1 and PD-L1, we first detect the colocal-
ization between PD-1 receptors on NVs and PD-L1 on B16F10 
cells. PD-1 NVs were incubated with EGFP-PD-L1 expressing 
B16F10 cells for 5 h. Notably, PD-1 NVs were colocalized with 
EGFP-PD-L1 on the B16F10 melanoma cells (Figure 2c). To 
confirm the molecular binding between PD-1 receptors on NVs 
and PD-L1 on the B16F10 cells, we added aPD-L1 antibody 
to block the PD-L1 on the B16F10 cells. The confocal images 
showed that PD-1 NVs binding was dramatically reduced when 
PD-L1 antibody (aPD-L1) was preincubated with the cells 
(Figure S4a, Supporting Information). Moreover, the flow cyto-
metric data also showed that the quantity of PD-1 NVs binding 
with B16F10 cells is significantly reduced when PD-L1 antibody 
was preincubated with the cells (Figure 2d; Figure S4b, Sup-
porting Information). We also employed coimmunoprecipita-
tion (CO-IP) assay to detect the molecular interaction between 
PD-1 receptor and PD-L1. After incubation of the PD-1 NVs 
with B16F10 melanoma cells for 20 h, the cells were harvested. 
PD-1 primary antibody was used to pull down the PD-1 recep-
tors on the NVs. Remarkably, PD-L1 was pulled down together 
with PD-1 receptors by the PD-1 antibody (Figure 2e), indi-
cating that PD-1 NVs physically interact with PD-L1 expressed 
by B16F10 cells. Together, these results substantiated that the 
NVs presenting PD-1 on the surface could effectively interact 
with tumor cells through the binding between PD-1 receptor 
and PD-L1.

To investigate the systemic biodistribution and kinetics of 
PD-1 NVs, we labeled the free NVs and PD-1 NVs with Cy5.5. 
Free NVs and PD-1 NVs were injected into the mice through 
tail-vein. As shown in Figure 2f, the PD-1 NVs had higher blood 
retention compared to the free NVs. The PD-1 NVs exhibited 
32% and 17% overall retention compared to 12% and 1.7% 
retention of the free NVs at 8 and 48 h, respectively. Next, we 
examined the in vivo tissue distribution of PD-1 NVs. B16F10-
tumor-bearing mice received Cy5.5-labeled PD-1 NVs via tail-
vein injection. Notably, we observed the accumulation of Cy5.5 
fluorescence of PD-1 NVs primarily at the liver, kidney, and 
tumor sites (Figure 2g,h). To further assess the biodistribution 
of the PD-1 NVs, we quantified the Cy5.5-labeled NVs in the 
sections of organs and tumors by confocal imaging. The WGA 
Alexa-Fluor 488 dye was used to stain the cell membrane in the 
tissue sections. The distribution of the PD-1 NVs paralleled the 
imaging data showing intensive accumulation of the PD-1 NVs 
in the tumor tissue sections (Figure 2i).

To determine whether the PD-1 NVs promote the mice 
immune response to the melanoma tumor, we established 
a melanoma tumor model in which B16F10-luc cells were 
inoculated subcutaneously in C57BL/6 mice. Five days after 
tumor inoculation, 25 mg (based on protein weight) per kg 
free NVs and 20–30 mg per kg PD-1 NVs were inoculated in 
mice through tail-vein injection. Tumor growth was moni-
tored by measuring both bioluminescence signals and tumor 
size. Notably, the growth of B16F10 tumors was significantly 
delayed in mice treated with PD-1 NVs at the dosage of 20, 25, 
and 30 mg kg−1 (Figure S5, Supporting Information). To con-
firm the in vivo antitumor effect of PD-1 NVs, we employed 



treatment with the administration of the anti-PD-L1 antibody 
as a positive control. The mice were divided into three groups: 
25 mg per kg free NVs (Group 1) and PD-1 NVs (Group 2) 
were injected in mice through the tail vein every three days for 
five cycles. Anti-PD-L1 antibody (aPD-L1, Group 3) was also 
injected into mice at 2 mg kg−1 as a positive control group. 
Tumor growth was monitored using both bioluminescence sig-
nals and tumor size. Of note, PD-1 NVs significantly delay the 
B16F10 melanoma tumor growth, comparable to the treatment 

with aPD-L1 (Figure 3a–c). Consequently, PD-1 NVs improved 
the survival of the mice (Figure 3d), and 20% of mice survived 
more than 60 d upon PD-1 NVs treatment. Moreover, there was 
no obvious weight loss during the treatment (Figure 3e). No 
significant antitumor effects were observed in the mice treated 
with free NVs.

Exhausted CD8+ T cells express inhibitory receptor pro-
teins, including PD-1, TIGIT, LAG3, and TIM3,[14] and have 
reduced capacity to produce immune cytokines, such as IFN-γ 

Figure 2. In vitro biological behavior and in vivo biodistribution of PD-1 NVs. a) DsRed-PD-1 NVs bound on the cell membrane of B16F10 cancer cells. 
PD-1 NVs (50 µg mL−1, protein weight) or PD-1 free NVs labeled with Cy5.5 (50 µg mL−1, protein weight) were incubated with B16F10 cells for 2 h. WGA 
Alexa-Fluor 488 dye was used to detect B16F10 cell membrane (Scar bar: 10 µm). b) DsRed-PD-1 NVs were internalized by DCs. PD-1 NVs (50 µg mL−1) 
were incubated with DCs for 2 h. WGA Alexa-Fluor 488 dye was used to detect DC membrane. Scar bar: 10 µm. c) B16F10 cells were transfected with 
EGFP-PD-L1 plasmid for 20 h, then incubated with PD-1 NVs (50 µg mL−1) for 5 h; the colocalization of PD-1 NVs and PD-L1 proteins were detected  
(Scar bar: 10 µm). The above images are the enlarged ones in the white collar on the underside images. d) The representative flow cytometric analysis images 
of PD-1 NVs binding with B16F10 cells (gated on DsRed+). PD-1 NVs (50 µg mL−1) were incubated with B16F10 cells for 5 h. Or aPD-L1 antibody (20 µg mL−1) 
was incubated with the cells for 4 h before the PD-1 NVs were added in the culture medium as indicated. e) CO-IP and western blot were used to examine the 
interaction between PD-1 (on NVs) and PD-L1 (on B16F10 cells). Immunoprecipitation (IP); Immunoblot (IB). f) Cy5.5 labeled free NVs and PD-1 NVs were 
injected through tail-vein of the mice. Fluorescence was measured at different time points as indicated (n = 3). Error bar, mean ± s.d. g) The IVIS spectrum 
images of distribution of free NVs and PD-1 NVs in tumor and major organs. h) Fluorescence intensity per gram of tissue in tumor and major organs as indicated  
(n = 3). Error bar, mean ± s.d. i) The distribution of PD-1 NVs in the organs and tumor sections was detected using confocal microscope. Scar bar: 100 µm.



Figure 3. In vivo antitumor effect of PD-1 NVs. a) In vivo bioluminescence imaging of the B16F10 melanoma tumor of different mice groups at dif-
ferent time points after the tail-vein injection of free NVs, PD-1 NVs and PD-L1 antibody. Day 0: the day for the first time of treatment. b) Average 
tumor volumes of the treated mice in different groups (n = 7). Error bar, mean ± s.e.m. c) Image of representative tumor extracted from euthanized 
mice of each group. d) Survival curves for the mice received the treatment of PD-1 NVs, PD-L1 antibody, and free NVs (n = 10). e) Body weights of 
mice received the treatment and control mice. Error bar, mean ± s.d. f) IFN-γ levels in serum from mice isolated at day 20 after mice received the first 
indicated treatment (n = 3). Error bar, mean ± s.d. g,h) Representative plots (g) and quantitative analysis (h) of T cells (gated on CD3+ cells) in treated 
tumor analyzed by flow cytometry (n = 3). Error bar, mean ± s.d. i) Representative image and j) quantitative analysis of immunofluorescence staining of 
the tumor sections showing infiltrated CD4+ T cells and CD8+ T cells (n = 3). Error bar, mean ± s.d. Scar bar: 100 µm. Throughout, NS: no significant, 
*P < 0.05, **P < 0.01, ***P < 0.001; by one-way analysis of variance (ANOVA) with b,f,h,j) Tukey post-hoc tests or by d) Log-Rank (Mantel-Cox) test.



and TNF-α.[15] To assess whether PD-1 NVs treatment reduces 
T cell exhaustion and maintain their antitumor function, we 
measured IFN-γ and TNF-α levels in the serum of the treated 
mice by the end of the fifth cycles. IFN-γ levels in the serum 
of mice treated with either PD-1 NVs or aPD-L1 were sig-
nificantly increased (Figure 3f), while TNF-α levels remained 
unchanged (Figure S6, Supporting Information). The infiltra-
tion of CD8+ T cells in the harvested tumor was analyzed by 
flow cytometry. The percentage and number of activated CD8+ 
T cells were significantly increased in tumor collected from 
mice treated with either PD-1 NVs or aPD-L1 groups as com-
pared to control group (Figure 3g, h). Similarly, higher den-
sities of CD8+ T cells were detected by immunofluorescence 
in tumors collected from mice treated with either PD-1 NVs 
or aPD-L1 (Figure 3i,j). Finally, after five cycles of treatments, 
blood cell counts showed that lymphocyte and monocyte con-
tents slightly decreased in mice treated with PD-1 NVs, while 
the lymphocyte ratios were not affected (Figure S7a,b, Sup-
porting Information). Additionally, the plasma level of immu-
noglobulin E (IgE) antibody, produced by the immune system 

overreacts to an allergen,[16] did not significantly increase after 
five cycles of the treatment with PD-1 NVs (Figure S8, Sup-
porting Information).

Next, we loaded the IDO inhibitor 1-MT into the PD-1 NVs 
to investigate the combinatorial therapy of IDO inhibitor and 
immune checkpoint blockage. High loading capacity (≈24%, 
drug/protein weight ratio) of 1-MT was achieved by employing 
the electric shock method compared to the traditional incuba-
tion methods (≈16%) (Figure S9a, Supporting Information). 
The release of 1- MT from the PD-1 NVs was also tested. 1-MT 
can be rapidly released from the NVs within 24 h in vitro 
(Figure S9b, Supporting Information). Furthermore, to deter-
mine the inhibitory effect of 1-MT released by 1-MT-loaded 
PD-1 NVs, we performed an IDO inh¡ibition assay using HeLa 
cells that express IDO after IFN-γ stimulation. Remarkably, 
PD-1 NVs loaded with 1-MT had better inhibitory effect com-
pared to the free 1-MT and 1-MT-loaded free NVs (Figure S10, 
Supporting Information).

To demonstrate whether the simultaneous IDO inhibi-
tion and PD-L1 blockade provided by 1-MT-loaded PD-1 NVs 

Figure 4. In vivo suppression of tumor growth by 1-MT-loaded PD-1 NVs. a) Average tumor volumes of the treated mice in different groups as indicated 
(n = 7). Error bar, mean ± s.e.m. b) Survival curves for the mice received different treatment as indicated (n = 10). c) Representative flow cytometry 
plots and d) quantitative analysis of T cells in the tumors from different treatment groups (n = 3). The cells were pregated for positive CD3+ expres-
sion. Error bar, mean ± s.d. e) Immunofluorescence of the tumors showed infiltrated CD4+ T cells and CD8+ T cells. Scar bar: 100 µm. Throughout, 
NS: no significant, *P < 0.05, **P < 0.01, ***P < 0.001; a,d) two two-way ANOVA analyses were carried out to do the analyses. First two-way ANOVA 
with Tukey post-hoc test analysis carried out between the group of free-NVs (G2), PD-1 NVs (G4), 1-MT@NVs (G5), and 1-MT@PD1- NVs (G7). The 
two factors considered were 1-MT and PD-1. The second two-way ANOVA with Tukey post-hoc test carried out between the groups of the PBS control 
(G1), aPD-L1, 1-MT (G3), and aPD-L1+1-MT (G6). The two factors in this model were 1-MT and aPD-L1 or b) by Log-Rank (Mantel-Cox) test.



enhance antitumor activity, B16F10-luc tumor bearing mice 
were treated with PBS (Group 1), free NVs (Group 2), free 
1-MT (Group 3), PD-1 NVs (Group 4), 1-MT-loaded free NVs
(Group 5), 1-MT plus aPD-L1 (Group 6) and 1-MT-loaded PD-1
NVs (Group 7) every 3 d for five cycles. Tumor growth was
monitored by measuring both bioluminescence signals and
sizes of the tumors. We found high response rate in the mice
treated with free 1-MT and 1-MT-loaded free NVs, however,
limited suppression of tumor growth was observed (Figure 4a;
Figures S11 and S12, Supporting Information). This non-
ideal efficacy may be because multiple immune suppression
mechanisms exist within the TME. Notably, PD-1 NVs had
better antitumor effects as compared to 1-MT (Figure 4a;
Figures S11 and S12, Supporting Information). The mice
treated with 1-MT plus aPD-L1 exhibited significantly delayed
progress of the melanoma tumors (Figure 4a; Figures S11 and
S12, Supporting Information). Importantly, treatment with
1-MT-loaded PD-1 NVs showed a high response rate to the
melanoma tumor, which was much more efficient than the
treatment with 1-MT or PD-1 NVs alone (Figure 4a; Figures
S11 and S12, Supporting Information), and are comparable to
the treatment with 1-MT plus aPD-L1 (Figure 4a; Figures S11
and S12, Supporting Information). Furthermore, the dual inhi-
bition of IDO and PD-L1 by 1-MT-loaded PD-1 NVs improved
the survival of the treated mice without obvious weight loss
(Figure 4b; Figure S13, Supporting Information). We further
examined the density of the CD8+ T cells in the tumor margin
of different treatment groups. Tumor-infiltrated CD8+ T cells
from tumors in all the treatment groups were harvested and
analyzed by flow cytometry and immunofluorescence. It was
demonstrated that treatment with free 1-MT and 1-MT-loaded
NVs increased the number of infiltrating CD8+ T cells by
≈15–20% compared to the PBS-treated group (Figure 4c,d).
Immunofluorescence staining confirmed that PD-1 and 1-MT-
loaded PD-1 NVs significantly enhanced the density of tumor-
infiltrated CD8+ T cells (Figure 4e). The therapeutic efficacy of 
combination treatment was better than the individual ones. 
Infiltration of CD4+ FoxP3+ T cells was also studied. Notably, 
CD4+ FoxP3+ T cells were reduced in 1-MT-loaded PD-1 NVs 
group as well compared to control group (Figure S14, Sup-
porting Information). Finally, major organs such as liver, spleen, 
kidney, heart, and lung were collected and assessed by immu-
nohistochemistry without showing any obvious sign of organ 
damage (Figure S15, Supporting Information). These data 
revealed that IDO inhibition combined with PD-L1 blockage 
PD-1 NVs significantly disrupted the immunosuppression of 
TME, which enhanced the elimination of cancer cells by the 
host’s immune system.

In summary, we engineered cellular nanocarriers displaying 
PD-1 receptors that effectively bind to PD-L1 on the tumor cells 
and disrupt the PD-1/PD-L1 inhibitory axis. PD-L1 blockade by 
PD-1 NVs significantly enhanced the immune response against 
the melanoma tumor in vivo. Furthermore, PD-1 NVs could 
also be adapted to carry a variety of therapeutics to achieve a 
synergistic efficacy. IDO inhibition and PD-L1 blockade were 
achieved by 1-MT-loaded PD-1 NVs. The disruption of dual 
immune tolerance mechanisms in tumors remarkably sup-
pressed the melanoma tumor growth in vivo. Thus, PD-L1 
blockade by PD-1 cellular NVs provides a promising strategy 

that leverages functions of both delivery vehicles and encapsu-
lated drugs for enhancing immunotherapy.[17]
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