1,256 research outputs found
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
Conformal algebra: R-matrix and star-triangle relation
The main purpose of this paper is the construction of the R-operator which
acts in the tensor product of two infinite-dimensional representations of the
conformal algebra and solves Yang-Baxter equation. We build the R-operator as a
product of more elementary operators S_1, S_2 and S_3. Operators S_1 and S_3
are identified with intertwining operators of two irreducible representations
of the conformal algebra and the operator S_2 is obtained from the intertwining
operators S_1 and S_3 by a certain duality transformation. There are
star-triangle relations for the basic building blocks S_1, S_2 and S_3 which
produce all other relations for the general R-operators. In the case of the
conformal algebra of n-dimensional Euclidean space we construct the R-operator
for the scalar (spin part is equal to zero) representations and prove that the
star-triangle relation is a well known star-triangle relation for propagators
of scalar fields. In the special case of the conformal algebra of the
4-dimensional Euclidean space, the R-operator is obtained for more general
class of infinite-dimensional (differential) representations with nontrivial
spin parts. As a result, for the case of the 4-dimensional Euclidean space, we
generalize the scalar star-triangle relation to the most general star-triangle
relation for the propagators of particles with arbitrary spins.Comment: Added references and corrected typo
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
Reprogramming energy metabolism and inducing angiogenesis : co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas
Background: Deregulation of cellular energetic metabolism was recently pointed out as a hallmark of cancer cells. This deregulation involves a metabolic reprogramming that leads to a high production of lactate. Lactate efflux, besides contributing for the glycolytic flux, also acts in the extracellular matrix, contributing for cancer malignancy, by, among other effects, induction of angiogenesis. However, studies on the interplay between cancer metabolism and angiogenesis are scarce. Therefore, the aim of the present study was to evaluate the metabolic and vascular molecular profiles of cervical adenocarcinomas, their co-expression, and their relation to the clinical and pathological behavior.
Methods: The immunohistochemical expression of metabolism-related proteins (MCT1, MCT4, CD147, GLUT1 and CAIX) as well as VEGF family members (VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3) was assessed in a series of 232 cervical adenocarcinomas. The co-expression among proteins was assessed and the expression profiles were associated with patients’ clinicopathological parameters.
Results: Among the metabolism-related proteins, MCT4 and CAIX were the most frequently expressed in cervical adenocarcinomas while CD147 was the less frequently expressed protein. Overall, VEGF family members showed a strong and extended expression with VEGF-C and VEGFR-2 as the most frequently expressed and VEGFR-1 as the less expressed member. Co-expression of MCT isoforms with VEGF family members was demonstrated. Finally, MCT4 was associated with parametrial invasion and HPV18 infection, CD147 and GLUT1 with distant metastasis, CAIX with tumor size and HPV18 infection, and VEGFR-1 with local and lymphnode metastasis.
Conclusions: The results herein presented provide additional evidence for a crosstalk between deregulating cellular energetics and inducing angiogenesis. Also, the metabolic remodeling and angiogenic switch are relevant to cancer progression and aggressiveness in adenocarcinomas.CP received a post-doctoral fellowship (SFRH/BPD/69479/2010) and FM-S received a doctoral fellowship (SFRH/BD/87139/2012) from FCT (Portuguese Foundation for Science and Technology). This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of "Programa Operacional Tematico Factores de Competitividade" (COMPETE) of "Quadro Comunitario de Apoio III" and co-financed by Fundo Comunitario Europeu FEDER, and also by FAPESP 2008/03232-1
In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis
Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis
Seed conformal blocks in 4D CFT
We compute in closed analytical form the minimal set of \u201cseed\u201d conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation (\u2113, \u2113) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0, |\u2113 12 \u2113|) and one (|\u2113 12 \u2113|, 0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any (\u2113, \u2113), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p = |\u2113 12 \u2113| and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories
Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector
A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
- …
