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1 Introduction

There has recently been a revival of interest in the old idea of the bootstrap program [1, 2]

after ref. [3] observed that its applicability extends to Conformal Field Theories (CFTs)

in more than two space-time dimensions (2D). Since ref. [3], several constraints have been

imposed on CFTs data, namely spectrum of operators and Operator Product Expansion

(OPE) coefficients, in CFTs in different dimensions, up to 6D (see e.g. ref. [4]). Imposing

additional (mild and reasonable) assumptions, one can also compute CFT data of given

CFTs, the 3D Ising model being probably the most striking example [5–7].

The bootstrap approach is a systematic way of imposing crossing symmetry in cor-

relation functions. Analyzing 4-point functions is enough to get constraints on the CFT

data. In order to be able to implement the bootstrap program, it is essential to be able

to decompose the 4-point functions in terms of the individual contributions of the infinite

number of primary operators (and all their descendants) that can be exchanged in any

given kinematical channel, namely that appear in the OPE of the four external operators.

– 1 –
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For each primary operator, in particular, one has to resum the infinite series of associated

descendant operators in what is called a Conformal Partial Wave (CPW). CPWs can be

decomposed in terms of scalar functions known as Conformal Blocks (CBs). Before the

advent of ref. [3], the only known CBs were those associated to symmetric traceless tensors

exchanged in scalar 4-point functions in even number of dimensions [8, 9], denoted for short

scalar symmetric CBs in the following.

Not surprisingly, after ref. [3] significant progress has been made in computing CBs.

Various techniques have been introduced to determine in an expanded form the scalar

symmetric CBs in 3D [5, 10–12], where a general closed analytic expression has not been

found so far. In particular, using the techniques of ref. [12] and the further developments

in ref. [13], CBs associated to the exchange of fermion operators in 3D have recently been

computed [14]. In ref. [15] it has been shown how to relate, in any number of dimensions,

symmetric CBs in correlators of external traceless symmetric operators to the known scalar

symmetric blocks. In ref. [16] the so called shadow formalism method [17–20], already used

in ref. [8], has been further developed to compute any CB in any number of dimensions. Al-

though very powerful, the shadow formalism leads to quite involved and not so enlightening

expressions. Applications of this method for some specific correlators appeared in ref. [21].

Some other limits of the known CBs have been discussed in refs. [22, 23], as well as their in-

terpretation in terms of Witten diagrams in Anti de Sitter (AdS) space [24]. Despite signifi-

cant progress, not much has been done in the analysis of CBs associated to mixed symmetry

tensor (or fermion) operators, denoted simply mixed tensor CBs in the following. Such CBs

are crucial to extend the bootstrap program to tensor correlators in CFTs in d > 3 space-

time dimensions, where such operators can appear in the OPE between two external fields.1

Mixed tensor CBs in 4D CFTs have recently been analyzed in ref. [25]. In particular

it has been shown there how to relate, by means of differential operators, mixed tensor

CBs appearing in an arbitrary spinor/tensor 4-point correlator (not necessarily traceless

symmetric operators) to a basis of minimal mixed tensor CBs. These “seed” blocks arise

from 4-point functions involving two scalars and two tensor fields in the (0, p) and (p, 0)

representations of the Lorentz group, with p an arbitrary integer ((1, 0) is a fermion). Such

4-point functions are the simplest ones (i.e. with the least number of tensor structures)

where (`+p, `) or (`, `+p) mixed symmetry (bosonic or fermionic) tensors can be exchanged

in some OPE limit, for any `.

The aim of this paper is to compute the “seed” CBs identified in ref. [25]. We will be

able to find in closed analytical form the set of seed CBs associated to the exchange of op-

erators in the (`, ¯̀) representations of the Lorentz group. They are labelled by the positive

integer p = |` − ¯̀| and are thus infinite. We consider at the same time CBs associated to

both bosonic (even p) and fermionic (odd p) mixed symmetry tensor operators. For each

given p, one has to determine p + 1 CBs G
(p)
e , e = 0, 1, . . . , p, one for each tensor struc-

ture appearing in the corresponding CPW. Using the 6D embedding formalism in twistor

space in index-free notation [16, 26], we will be able to write in a compact form the system

1In 3D, scalar blocks, the recently computed fermion ones [14] and the results of ref. [15] allow us to

determine any other CB.
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of Casimir equations satisfied by the p + 1 CBs. Solving the Casimir system is a hard

task, that also requires the knowledge of some boundary conditions, like the asymptotic

behaviour of G
(p)
e . We first attack the problem using the shadow formalism. With the use

of some tricks, we find integral expressions of G
(p)
e for any p and `, and explicit expressions

for p = 1, 2 (and any `). The shadow formalism also allows us to get the asymptotic be-

haviour of G
(p)
e in the OPE limit u → 0, v → 1 for p = 1, 2 and any `, and for any p and

` = 0, together with some other information on the structure of the blocks. Thanks to the

knowledge acquired in this way, we will be able to go back to the Casimir system and solve

it for any p and `, using generalizations of the methods introduced in ref. [9] (and further

refined in ref. [27]) to compute 6D symmetric CBs for scalar correlators. Like scalar blocks

in higher even dimensions, the mixed tensor CBs are found using an ansatz given by a sum

of hyper-geometric functions with unknown coefficients cem,n. In this way a system of p+ 1

linear coupled differential equations of second order in two variables is reduced to an alge-

braic linear system for cem,n. The set of non-trivial coefficients cem,n, determined by solving

the linear system, admits a useful geometric interpretation. They span a two-dimensional

lattice in the (m,n) plane. For each CB labelled by e, the shape of the lattice is an octagon,

with p and e dependent edges. For large p, the total number of coefficients cem,n grows like

p3 and their explicit form becomes more and more complicated as p increases. We point

out that a similar geometric interpretation applies also to the set of non-trivial coefficients

xm,n entering the solution for the symmetric scalar blocks in even number of dimensions.

The structure of the paper is as follows. In section 2 we briefly review the results of

ref. [25] and define the CPWs and the CBs of interest. In section 3, we derive the system of

p+ 1 Casimir equations satisfied by the CBs G
(p)
e , for any p. This is reported in eq. (3.16).

In section 4 we compute the CPWs using the shadow formalism approach. In particular, in

subsection 4.1 we derive compact integral expressions of the CBs for any p and `, eq. (4.25).

In subsection 4.2 we write a more explicit expression of the CBs for ` = 0 and in subsection

4.3 we find another integral expression for the CPW, eq. (4.40), more suitable to perform

computations with ` 6= 0. The solution of the Casimir system of equations is described

in section 5. In subsection 5.1 we derive, by extending the results found in section 4, the

asymptotic behaviour of the CBs. We discuss the form of the ansatz in subsection 5.2, and

finally we reduce the coupled differential equations to an algebraic system in subsection

5.3. The solution of the CBs is finally derived in subsection 5.4, eq. (5.36). In subsection

5.5 we draw an analogy between the mixed tensor blocks G
(p)
e and the symmetric scalar

blocks in d even dimensions. We conclude in section 6. Various technical details, as well

as the explicit form of the coefficient defining the fermionic CBs entering scalar-fermion

correlators (p = 1) are reported in two appendices.

The explicit form of all the coefficients cem,n entering the CBs (5.36) for p = 1, 2, 3, 4

can be downloaded from https://sites.google.com/site/dskarateev/downloads.

2 Deconstructing conformal partial waves

In 4D CFTs, for a given 4-point function, CBs and CPWs are labelled by the quantum

numbers of the exchanged primary operator and thus they depend on its scaling dimen-
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sion ∆ and representation (`, ¯̀) of the 4D Lorentz group, with ` and ¯̀ positive integers.

Four-point functions involving only scalar fields are the best known. In any channel, the

exchanged operators have ¯̀ = `, i.e. they are all and only traceless symmetric tensors. In

this case CPW and CB are equivalent up to a kinematic factor and their analytic form

has been derived in a remarkable compact form in refs. [8, 9] for any ∆ and `. Four-point

functions involving tensor (or fermion) operators are considerably more complicated be-

cause different tensor structures arise and more operators can be exchanged. A generic

fermion-tensor 4-point function can be parametrized as

〈OI11 (x1)OI22 (x2)OI33 (x3)OI44 (x4)〉 = K4

N4∑
n=1

gn(u, v)T I1I2I3I4n (xi) , (2.1)

where Ii are schematic Lorentz indices of the operators Oi(xi),

K4 =

(
x2

24

x2
14

) τ1−τ2
2
(
x2

14

x2
13

) τ3−τ4
2

(x2
12)−

τ1+τ2
2 (x2

34)−
τ3+τ4

2 (2.2)

is a kinematic factor, x2
ij = (xi−xj)µ(xi−xj)µ, τi = ∆i+ (`i+ ¯̀

i)/2, u and v are the usual

conformally invariant cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (2.3)

and T I1I2I3I4n (xi) are kinematically determined tensor structures. The dynamical informa-

tion of the 4-point function is encoded in the N4 functions gn(u, v). As we mentioned, a

bootstrap analysis requires to rewrite the 4-point function (2.1) in terms of the operators

exchanged in any channel. In the s-channel (12-34), for instance, we have

〈OI11 (x1)OI22 (x2)OI33 (x3)OI44 (x4)〉 =
∑
i,j

∑
Or

λiO1O2Orλ
j
Ōr̄O3O4

W
(i,j)I1I2I3I4
O1O2O3O4,Or(xi) , (2.4)

where i and j run over the possible independent tensor structures associated to the three

point functions 〈O1O2Or〉 and 〈Ōr̄O3O4〉, λ’s being their corresponding structure constants

and W
(p,q)I1I2I3I4
O1O2O3O4

(u, v) are the associated CPWs. The sum over the exchanged primary

operators Or includes a sum over all possible representations (`, ¯̀) that can appear in the

4-point function and, for each representation, a sum over all the possible primaries, i.e. a

sum over all possible scaling dimensions ∆Or . It is useful to define δ = |¯̀−`| and rearrange

the sum over (`, ¯̀) in a sum over, say, ` and δ. There is an important difference between

these two sums. For any 4-point function, the sum over l extends up to infinity, while the

sum over δ is always finite. More precisely, we have

δ = 0, 2 , . . . , p− 2, p, Or bosonic

δ = 1, 3 , . . . , p− 2, p, Or fermionic.
(2.5)

In both cases, the integer p is defined to be

p = min(`1 + ¯̀
1 + `2 + ¯̀

2, `3 + ¯̀
3 + `4 + ¯̀

4) , (2.6)

– 4 –
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and is automatically an even or odd integer when Or is a boson or a fermion operator. There

are several CPWs for each exchanged primary operator Or, depending on the number of

allowed 3-point function structures. They admit a parametrization like the 4-point function

itself,

W
(i,j)I1I2I3I4
O1O2O3O4,Or(xi) = K4

N4∑
n=1

g
(i,j)
Or,n(u, v)T I1I2I3I4n (xi) , (2.7)

where g
(i,j)
Or,n(u, v) are the CBs, scalar functions of u and v that depend on the dimensions

and spins of the external and exchanged operators. Imposing crossing symmetry by requir-

ing the equality of different channels is the essence of the bootstrap approach. In order to

successfully bootstrap the correlator (2.1), it is necessary to know the explicit form of the

CPWs (2.7), in particular the CBs g
(i,j)
Or,n(u, v).

It has been shown in ref. [25] that the CPWs associated to an operator O(`,`+p) (and

similarly for its conjugate O(`+p,`)
) exchanged in the OPE channel (12)(34) of a 4-point

function 〈O1O2O3O4〉, can be obtained from a single CPW W seed
O(`,`+p) as follows:

W
(i,j)

O1O2O3O4,O(`,`+p) = Di12D
j
34W

seed
O(`,`+p) , (2.8)

where Di12 and Di34 are differential operators that depend on O1,2 andO3,4, respectively. For

even integer p = 2n, the seed CPWs are those associated to 4-point functions of two scalar

fields with one (2n, 0) and one (0, 2n) bosonic operators, while for odd integer p = 2n+ 1,

they consist of 4-point functions of two scalar fields with one (2n+ 1, 0) and one (0, 2n+ 1)

fermionic operators:2

〈φ1(x1)F2,α1α2...α2n(x2)φ3(x3)F
β̇1β̇2...β̇2n

4 (x4)〉 , p = 2n , (2.9)

〈φ1(x1)ψ2,α1α2...α2n+1(x2)φ3(x3)ψ
β̇1β̇2...β̇2n+1

4 (x4)〉 , p = 2n+ 1 . (2.10)

In the above correlators, in the OPE channel 〈(12)(34)〉 primary operators O(`,`+δ) and

their conjugates O(`+δ,`)
can be exchanged only with the values of δ indicated in eq. (2.5)

and any `. There are several 4-point functions in which the operators O(`,`+p) and O(`+p,`)

are exchanged and in which the corresponding CPWs have a unique structure. Among

these, the correlators (2.9) and (2.10) are the ones with the minimum number of tensor

structures and hence the simplest. This is understood by noticing that for any value of

δ (and not only for δ = p) the operators O(`,`+δ) and their conjugates O(`+δ,`)
appear in

both the (12) and (34) OPE’s with one tensor structure only, since there is only one tensor

structure in the corresponding three-point functions:

〈φ(x1)Fα1...α2n(x2)Oβ̇1...β̇`+δ
α1...α` (x0)〉 , 〈Oβ̇1...β̇`

α1...α`+δ
(x0)φ(x3)F

β̇1...β̇2n(x4)〉 , (2.11)

〈φ(x1)ψα1...α2n+1(x2)Oβ̇1...β̇`+δ
α1...α` (x0)〉 , 〈Oβ̇1...β̇`

α1...α`+δ
(x0)φ(x3)ψ

β̇1...β̇2n+1
(x4)〉 . (2.12)

This implies then that the number of 4-point tensor structures appearing in eqs. (2.9)

and (2.10) is the minimum possible and equals to N4 = p+ 1.

2Strictly speaking, we focused in ref. [25] on the even p case, but it is obvious that the same result

applies to odd p.
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Summarizing, the problem of computing CPWs and CBs associated to the exchange of

mixed symmetry operators O(`,`+p) and O(`+p,`)
in any 4-point function is reduced to the

computation of the p+ 1 CBs appearing in the decomposition of W seed
O(`,`+p) and W

seed
O(`+p,`) .

Despite this simplification, the above computation is still technically challenging. A

further great simplification occurs by using the 6D embedding formalism [28–31] in twistor

space with index-free notation [16]. As we will see, among other things, this formalism

spare us from explicitly writing tensor structures with open indices for the correlators (2.9)

and (2.10). The 4D conformal group is isomorphic to the 6D Lorentz group SO(4, 2), so

by embedding the 4D fields φ(x) into 6D counterparts Φ(X), the non-linear conformal

transformations turn into linear 6D Lorentz transformations. 6D fields are defined on a 4

dimensional subspace: the projective (X ∼ λX) light-cone (XMX
M = 0) (see e.g. refs. [32,

33] for further details). Using the local isomorphism SO(4, 2) ∼ SU(2, 2), 4D Weyl spinors

ψα(x) can be embedded either into twistors Ψa(X) subject to a transversality constraint [32]

or to twistors Ψ
b
(X) subject to a gauge redundancy [16]. Following refs. [16, 26], we adopt

here the latter possibility. A general 4D primary field Oβ̇1...β̇¯̀
α1...α`(x), with scaling dimension ∆

in the (`, ¯̀) representation is embedded in a 6D multi-twistor field Oa1...a`
b1...b¯̀

(X), homogeneous

in X with degree τ = ∆ + (`+ ¯̀)/2. We can saturate the indices of multi-twistor fields by

multiplying them by auxiliary twistors S and S to get index-free scalar quantities:

O(`,¯̀)(X,S, S) = Sa1 . . . Sa`S
b1 . . . S

b¯̀
Oa1...a`
b1...b¯̀

(X) . (2.13)

The gauge redundancy requires that effectively

X
ba
Sa = S

a
Xab = S

a
Sa = 0 , (2.14)

where Xab = XMΣM
ab , X

ab
= XMΣ

ab
M , ΣM and ΣM are the 6D chiral gamma matrices.

The light-cone condition requires also XX = 0 (for all definitions and more details see

ref. [26]). All tensor structures in twistor correlators can be written in terms of scalar

functions of auxiliary twistors S’s and S’s. For n-point correlators one can find a basis of

all possible linearly independent functions of (S1, . . . , Sn, S1, . . . , Sn); for n = 4 such basis

includes, among others, the following invariants (i 6= j 6= k 6= l):

Iij ≡ SiSj , Jij,kl ≡
SiXkXlSj

Xkl
, (2.15)

where Xij = XM
i XjM . An independent basis for the p+1 tensor structures appearing in the

6D uplift of the correlators (2.9) and (2.10) can be obtained from the invariants in eq. (2.15):

〈Φ1(X1)F
(p,0)
2 (X2, S2)Φ3(X3)F

(0,p)
4 (X4, S4)〉 = K4

p∑
n=0

gn(U, V )In42J
p−n
42,31 , (2.16)

where K4, U and V are the 6D analogues of eqs. (2.2)–(2.3), obtained by replacing

x2
ij → Xij . We denote the 6D seed CPW associated to the exchange of the fields O(`,`+p)

and O
(`+p,`)

in the 4-point function (2.16) by W seed(p) and W
seed

(p), respectively. They

– 6 –
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are parametrized in terms of p+ 1 CBs as follows:

W seed(p) = K4

p∑
e=0

G(p)
e (U, V )Ie42J

p−e
42,31,

W
seed

(p) = K4

p∑
e=0

G
(p)
e (U, V )Ie42J

p−e
42,31.

(2.17)

For simplicity, we have dropped in eq. (2.17) the dependence of G
(p)
e and G

(p)
e on ∆ and

`. The CBs depend also on the external operator dimensions, more precisely on a and b,

defined as

a ≡ τ2 − τ1

2
=

∆2 −∆1

2
+
p

4
, b ≡ τ3 − τ4

2
=

∆3 −∆4

2
− p

4
. (2.18)

For simplicity of notation, we no longer distinguish between even and odd values of p,

since we can consider both cases simultaneously. It is then understood that in the corrre-

lator (2.16) F
(p,0)
2 and F

(0,p)
4 are 6D uplifts of 4D fermion fields for p odd.

It is possible to get W seed(p) from W
seed

(p), or vice versa, using the results of ref. [25]

and a parity transformation P. We have

W
seed

(p) = P WΦ1F 2Φ3F4,O(`,`+p) , (2.19)

where

WΦ1F 2Φ3F4,O(`,`+p) =
1

22p (p!)2

( p∏
n=1

cn

)
(∇12d̄1D̃1)p(∇43d3D̃3)pW seed(p)

∣∣∣∣
a→a− p

2
, b→b+ p

2

(2.20)

is the CPW associated to the parity dual 4-point function 〈Φ1F
(0,p)
2 Φ3F

(p,0)
4 〉, and

(cn)−1 = (4 + 3p− 2a− τ − 2n)(4 + 3p+ 2b− τ − 2n) , τ = ∆ + `+
p

2
. (2.21)

We do not report here the explicit form of the differential operators ∇ij , D̃i, d3 and d̄1, as

well as the action of parity on them and on the 6D SU(2, 2) invariants, that can be found

in ref. [25]. In fact, we will not use eq. (2.19) to compute W
seed

(p), because we will find

an easier way to directly compute both W seed(p) and W
seed

(p).

Instead of eq. (2.16), we could have considered the alternative 4-point function

〈Φ1(X1)F
(p,0)
2 (X2)F

(0,p)
3 (X3)Φ4(X4)〉 (2.22)

to calculate an analogue seed CPW W̃ seed(p). Since eq. (2.22) is equal to eq. (2.16) under

the permutation 3↔ 4, the CBs appearing in the decomposition of W seed(p) and W̃ seed(p)

are related as follows:

G̃(p)
e (U, V ; a, b) = V aG(p)

e

(
U

V
,

1

V
; a,−b

)
, e = 0, . . . , p . (2.23)

– 7 –
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The 4D CPWs W seed
O(`,`+p) and W

seed
O(`+p,`) are obtained by projecting to 4D their 6D coun-

terparts W seed(p) and W
seed

(p). There is no need to explicitly perform such projection,

because the 4D CBs are directly identified with their 6D counterparts. One has simply

G(p)
e (U, V ) = G(p)

e (u, v) , G
(p)
e (U, V ) = G

(p)
e (u, v) , (2.24)

where G
(p)
e (u, v) and G

(p)
e (u, v) are the 4D CBs entering the r.h.s. of eq. (2.7) when ex-

panding the 4D CPWs W seed
O(`,`+p) and W

seed
O(`+p,`) .

3 The system of Casimir equations

In this section we derive the system of second order Casimir equations for the seed conformal

blocks defined in eq. (2.17). Before addressing the more complicated case of interest, let us

recall how the Casimir equation for scalar correlators is derived. One starts by considering

the 4-point function

〈[Ĉ, φ1(x1)φ2(x2)]φ3(x3)φ4(x4)〉 , (3.1)

where Ĉ is the quadratic Casimir operator.3 Recasting the generators of the 4D conformal

group in a 6D form as L̂MN , with M,N 6D indices, we have

Ĉ =
1

2
L̂MN L̂

MN . (3.2)

The Casimir equation is derived by expressing eq. (3.1) in two different ways. On one hand,

we can replace in eq. (3.2) the operator L̂MN with its explicit action in terms of differential

operators acting on the scalar fields inserted at the points x1 and x2: [L̂MN , φ(x)] =

LMN (x, ∂)φ(x). On the other hand, we might consider the (12) OPE. Scalar operators can

only exchange symmetric traceless operators, so p = 0 in this case, and one has

φ1(x1)φ(x2) =
∑
O(`,`)

λφ1φ2OT µ1...µ`O(`,`)
µ1...µ`

(x2) + descendants , (3.3)

where T is a tensor structure factor whose explicit form will not be needed. In the latter

view, we end up having the commutator of Ĉ with O(`,`) which gives the Casimir eigenvalue

[Ĉ,O(`,`)(x)] = E0
`O(`,`)(x) (3.4)

where

Ep` = ∆ (∆− 4) + `2 + (2 + p)

(
`+

p

2

)
(3.5)

is the value associated to an operator in the (`+ p, `) or (`, `+ p) Lorentz representations.

Using then eq. (2.4) one derives a differential equation for each CPW, for any fixed ∆ and `.

3CBs satisfy also higher order equations obtained by means of higher Casimir invariants. We will not

consider them in this paper, since the quadratic Casimir will be enough for us to find the CB’s. Here and in

what follows we use a hat to denote an operator in the Hilbert space and to distinguish it from its explicit

form in terms of differential operators, where no hat appears.
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The explicit form of the second order differential operator acting on the CPW or

directly on the CB is best derived in the 4 + 2-dimensional embedding space. The CPW of

scalar correlators is parametrized by a single conformal block G
(0)
0 (z, z̄). When acting on

scalar operators at x1 and x2, the Lorentz generator can be written as LMN = L1,MN +

L2,MN , where

LiMN = i

(
XiM

∂

∂XN
i

−XiN
∂

∂XM
i

)
. (3.6)

Plugging eq. (3.6) in eq. (3.2), one finds after a bit of algebra the Casimir equation [9]

∆
(a,b;0)
2 G

(0)
0 (z, z̄) =

1

2
E0
`G

(0)
0 (z, z̄) , (3.7)

where a and b are defined in eq. (2.18), u = zz̄ and v = (1 − z)(1 − z̄). The second-order

differential operator ∆ is defined as

∆(a,b;c)
ε = D(a,b;c)

z +D
(a,b;c)
z̄ + ε

zz̄

z − z̄

(
(1− z)∂z − (1− z̄)∂z̄

)
, (3.8)

in terms of the second-order holomorphic operator

D(a,b;c)
z ≡ z2(1− z)∂2

z −
(
(a+ b+ 1)z2 − cz

)
∂z − abz . (3.9)

The above derivation can be generalized for CPWs entering 4-point correlators of tensor

fields. As we have seen in section 2, in the most general case the exchange of a given field

O(`,¯̀) is not parametrized by a single CPW, but by a set of CPWs W (i,j), whose number

depends on the number of tensor structures defining the three-point functions (12O) and

(34O). In order to derive the second order differential equation satisfied by W (i,j) one has

to properly identify the OPE coefficients λi appearing in the generalization of eq. (3.3)

with those in eq. (2.4). This is not needed for the seed correlators (2.16) since the CPW is

unique, like in the scalar correlator. For each p, we have

CW seed(p) = Ep` W
seed(p), (3.10)

where C is the explicit differential form of the Casimir operator to be determined and Ep`
is as in eq. (3.5). An identical equation is satisfied by W

seed
(p). Contrary to the scalar

case, the single differential equation (3.10) for W seed(p) turns into a system of equations

for the p+ 1 CBs G
(p)
e . Let us see how this system of equations can be derived for any p.

The action of the Lorentz generators Li,MN on tensor fields should include, in addition

to the orbital contribution (3.6), the spin part. Recall that SO(2, 4) ' SU(2, 2) and at the

level of representations 8spin ' 4+ 4̄, where 4 and 4̄ represent twistor indices. Denoting by

[ΣMN ] b
a and [ΣMN ]ab the generators of SU(2, 2) fundamental/anti-fundamental (twistor)

representations (see appendix A of ref. [26] for details and our conventions), one can label

the 6D spin representations by two integers (s, s̄) which count the number of twistor indices

in the 4 and 4̄ representations respectively. The Lorentz generators acting on generic 6D

fields in the (s, s̄) representation are then given by

[LiMN ]b1... bs; c1... cs̄a1... as̄; d1... ds
= i(XiM∂iN −XiN∂iM )(δc1a1

. . . δcs̄as̄)(δ
b1
d1
. . . δbsds) (3.11)
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+i

(
[ΣMN ]c1a1

δc2a2
. . . δcs̄as̄ + [ΣMN ]c2a2

δc1a1
. . . δcs̄as̄ + . . .

)
δb1d1

. . . δbsds

+i

(
[ΣMN ]b1d1

δb2d2
. . . δbsds + [ΣMN ]b2d2

δb1d1
. . . δbsds + . . .

)
δc1a1

. . . δcs̄as̄ .

We can get rid of all the twistor indices by defining the index-free Lorentz generators

LiMN = i(XiM∂iN −XiN∂iM ) + i(SiΣMN∂Si) + i(S̄iΣMN∂S̄i). (3.12)

Given any 6D tensor O(X,S, S̄) , we have

[L̂MN , Oi(Xi, Si, S̄i)] = LiMNOi(Xi, Si, S̄i) , (3.13)

where L̂MN satisfy the Lorentz algebra

[L̂MN , L̂RS ] = i
(
ηMSL̂NR + ηNRL̂MS − ηMRL̂NS − ηNSL̂MR

)
. (3.14)

The explicit form of the Casimir differential operator entering eq. (3.10) is obtained by

plugging eq. (3.12) in eq. (3.2). The single equation (3.10) for the CPW turns into a

system of second-order coupled differential equations for the p + 1 conformal blocks G
(p)
e ,

e = 0, . . . , p, since the coefficients multiplying the p + 1 tensor structures in eq. (2.17)

should vanish independently. Schematically

(C−Ep` )

(
K4

p∑
e=0

G(p)
e (U, V )Ie42J

p−e
42,31

)
= K4

p∑
e=0

Cas(p)
e (G)Ie42J

p−e
42,31 = 0 ⇒ Cas(p)

e (G) = 0 ,

(3.15)

where Cas
(p)
e (G) are the p+1 Casimir equations, in general each one involving all conformal

blocks G
(p)
e . Determining the Casimir system Cas

(p)
e (G) is conceptually straightforward

but technically involved. The main complication arises from the spin part of the Lorentz

generator (3.12) that generates products of SU(2, 2) invariants not present in eq. (2.17).

The new invariants are linearly dependent and must be eliminated using relations among

them. See appendix A of ref. [25] for a list of such relations. This is a lengthy step,

that however can be automatized in a computer. When redundant structures have been

eliminated, one is finally able to read from eq. (3.15) the Casimir system Cas
(p)
e (G). Despite

the complicacy of the computation, the final system of p+ 1 equations can be written into

the following remarkably compact form:

Cas(p)
e (G) =

(
∆

(ae,be;ce)
2+p − 1

2

(
Ep` − ε

p
e

))
G(p)
e +Ape zz̄ L(ae−1)G

(p)
e−1 +Be L(be+1)G

(p)
e+1 = 0 ,

(3.16)

where e = 0, . . . , p,

εpe ≡ 3
4 p

2 − (1 + 2e) p+ 2e (2 + e), Ape ≡ 2(p− e+ 1), Be ≡
e+ 1

2
, (3.17)

and the coefficients Ep` are given in eq. (3.5). In eq. (3.16) it is understood that G
(p)
−1 =

G
(p)
p+1 = 0. An identical system of equations is satisfied by the conjugate CBs G

(p)
e . In-

terestingly enough, only two differential operators enter into the Casimir system: the
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second-order operator (3.8) that already features p = 0, with coefficients ae, be and ce
given by

ae ≡ a, be ≡ b+ (p− e), ce ≡ p− e , (3.18)

and the new linear operator L(µ) given by

L(µ) ≡ − 1

z − z̄

(
z(1− z)∂z − z̄(1− z̄)∂z̄

)
+ µ. (3.19)

Another remarkable property of the Casimir system (3.16) is that, for each given e and

p, at most three conformal blocks mix with each other in a sort of “nearest-neighbour

interaction”: Ge mixes only with Ge+1 and Ge−1. The Casimir equations at the “bound-

aries” Cas
(p)
0 and Cas

(p)
p involve just two blocks. For p = 0, the second and third terms in

eq. (3.16) vanish and the system trivially reduces to the single equation (3.7).

Finding the solution of the system (3.16) is a complicated task, that we address in the

next sections.

4 Shadow formalism

Another method to obtain CBs in closed analytical form uses the so called shadow for-

malism. It was first introduced by Ferrara, Gatto, Grillo, and Parisi [17–20] and used in

ref. [8] to get closed form expressions for the scalar CBs. In this section we apply the shadow

formalism, using the recent formulation given in ref. [16], to get compact expressions for

W seed(p) and W
seed

(p) in an integral form for any p and `.4 Using these expressions, we

compute the CBs G
(p)
e and G

(p)
e for ` = 0 and generic p. We then provide a practical way to

obtain G
(p)
e and G

(p)
e for any ` in a compact form. We finally use this method to compute

G
(p)
e and G

(p)
e for p = 1 and G

(p)
e for p = 2 explicitly.

Despite the power of the above technique, it is computationally challenging to go be-

yond the p = 2 case. Moreover, as we will see, we do not have any control on the final ana-

lytic form of CBs. In light of this, we will provide the full analytic solution for G
(p)
e and G

(p)
e ,

for any p, only in section 5, where we solve directly the set of Casimir differential equations

by using an educated ansatz for the solution. The results obtained in this section are how-

ever of essential help to argue the proper ansatz. They will also allow us to get the correct

physical asymptotic behaviour of G
(p)
e and G

(p)
e that will be used as boundary conditions

to solve the Casimir system of equations (3.16). Finally, the explicit computation of G
(p)
e

and G
(p)
e for p = 1 and G

(p)
e for p = 2 using the shadow formalism provides an important

consistency check for the validity of the full general solution (5.36) to be found in section 5.

4.1 CPW in shadow formalism

We start by briefly reviewing the shadow formalism along the lines of ref. [16], where the

reader can find more details. The CPW associated to the exchange of a given operator Or

4The shadow formalism given in an index-free 6D embedding twistor space has also been used in refs. [34,

35] to compute CBs in supersymmetric CFTs.
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with spin (`, ¯̀) in a correlator of four operators On(Xn), n = 1, 2, 3, 4 (in embedding space

and twistor language) is given by

W
(i,j)

O(`,¯̀)(Xi) = ν

∫
d4X0〈O1(X1)O2(X2)Or(X0, S, S̄)〉i

←→
Π `,¯̀〈Õr(X0, T, T̄ )O3(X3)O4(X4)〉j

∣∣∣∣
M

,

(4.1)

where ν is a normalization factor, the projector gluing two 3-point functions is given by

←→
Π `,¯̀ = (

←−
∂ SX0

−→
∂ T )`(

←−
∂ S̄X0

−→
∂ T̄ )

¯̀
, (4.2)

and Õr is the shadow operator

Õr(X,S, S̄) ≡
∫
d4Y

1

(−2X · Y )4−∆+`+¯̀Or̄(Y, Y S̄, Ȳ S) . (4.3)

In eq. (4.1) we have omitted for simplicity the dependence of On on their auxiliary twistors

Sn, S̄n, and the subscripts i and j in 〈O1O2Or〉 and 〈ÕrO3O4〉 denote the three point

functions stripped of their OPE coefficients:

〈O1O2O3〉 ≡
∑
i

λiO1O2O3
〈O1O2O3〉i . (4.4)

The integral in eq. (4.1) would actually determine the CPW associated to the opera-

tor Or(X,S, S̄) plus its unwanted shadow counterpart, that corresponds to the exchange

of a similar operator but with the scaling dimension ∆ → 4 − ∆. The two contribu-

tions can be distinguished by their different behaviour under the monodromy transforma-

tion X12 → e4πiX12. In particular, the physical CPW should transform with the phase

e2iπ(∆−∆1−∆2), independently of the Lorentz quantum numbers of the external and ex-

changed operators. This projection on the correct monodromy component explains the

subscript M in the bar at the end of eq. (4.1).

We use eq. (4.1) to get an integral form of W seed(p) and W
seed

(p) in eq. (2.17). The

explicit expressions of the needed 3-point functions are given by

〈Φ1(X1)F2(X2)O(`,`+p)(X0)〉 = K3(τ1, τ2, τ)Ip02J
`
0,12 ,

〈Φ1(X1)F2(X2)O
(`+p,`)

(X0)〉 = K3(τ1, τ2, τ)Kp
1,02J

`
0,12 , (4.5)

where

K3(τ1, τ2, τ3) = X
τ3−τ1−τ2

2
12 X

τ2−τ1−τ3
2

13 X
τ1−τ2−τ3

2
23 , (4.6)

is a kinematic factor and

Ki,jk ≡

√
Xjk

XijXik
SjXiSk , Ki,jk ≡

√
Xjk

XijXik
S̄jXiS̄k , Ji,jk ≡

1

Xjk
S̄iXjXkSi (4.7)

are SU(2, 2) invariants for three-point functions. The “shadow” 3-point function counter-

parts are given by

〈Õ(`,`+p)(X0)Φ3(X3)F̄4(X4)〉 ∝ 〈O(`,`+p)(X0)Φ3(X3)F̄4(X4)〉
∣∣∣
∆→4−∆

= K3

∣∣∣
∆→4−∆

K
p

3,04J
`
0,34,
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〈Õ
(`+p,`)

(X0)Φ3(X3)F̄4(X4)〉 ∝ 〈O(`+p,`)
(X0)Φ3(X3)F̄4(X4)〉

∣∣∣
∆→4−∆

= K3

∣∣∣
∆→4−∆

Ip40J
`
0,34.

Using the above relations, after a bit of algebra, one can write

W seed(p) =
ν

X
a12+ `

2
12 X

a34+ `+p
2

34

∫
D4X0

N`(p)

X
a01+ `

2
01 X

a02+ `+p
2

02 X
a03+ `+p

2
03 X

a04+ `
2

04

∣∣∣
M=1

, (4.8)

W
seed

(p) =
ν

X
a12+ `+p

2
12 X

a34+ `
2

34

∫
D4X0

N `(p)

X
a01+ `+p

2
01 X

a02+ `
2

02 X
a03+ `

2
03 X

a04+ `+p
2

04

∣∣∣
M=1

, (4.9)

where

a01 =
∆

2
+
p

4
− a, a02 =

∆

2
− p

4
+ a, a12 =

∆1 + ∆2

2
− ∆

2
,

a03 =
4−∆

2
+
p

4
+ b, a04 =

4−∆

2
− p

4
− b, a34 =

∆3 + ∆4

2
− 4−∆

2
, (4.10)

and

N`(p) ≡ (S̄S2)p(S̄X2X̄1S)`
←→
Π `,`+p(S̄4X3T̄ )p(T̄X4X̄3T )`, (4.11)

N `(p) ≡ (S̄4S)p(S̄X3X̄4S)`
←→
Π `+p,`(S2X1T )p(T̄X1X̄2T )`. (4.12)

We will not need to determine the normalization factors ν and ν̄ in eqs. (4.8) and (4.9).

Notice that the correct behaviour of the seed CPWs under X12 → e4πiX12 is saturated by

the factor X12 multiplying the integrals in eqs. (4.8) and (4.9). Hence the latter should

be projected to their trivial monodromy components M = 1, as indicated. Notice that

eqs. (4.11) and (4.12) are related by a simple transformation:

N `(p) = PN`(p)
∣∣∣
1↔3, 2↔4

, (4.13)

where P is the parity operator.

We can recast the expression (4.11) in a compact and convenient form using some

manipulations. We first define 3 variables

s ≡ X12X34

4∏
n=1

X0n, t ≡
1

2
√
s

(
X02X03X14 −X01X03X24 − (3↔ 4)

)
, u ≡ X02X03X34√

s
.

(4.14)

Then we look for a relation expressing the generic N`(p) in terms of the known N `(0):

N`(0) = (−1)`(`!)4 s`/2C1
` (t) , (4.15)

where Cp` are Gegenbauer polynomials of rank p. Starting from eq. (4.11), after acting

with the S and T derivatives, one gets

N`(p) = (`!)2(
−→
∂ S̄X0

−→
∂ T̄ )`+p

(
(S̄S2)p(S̄4X3T̄ )p(S̄ΩT̄ )`

)
, (4.16)

where we have defined Ωab = (X2X̄1X0X̄3X4)ab . In order to relate N`(p) above to N`+p(0)

in eq. (4.15), we look for an operator D̃ satisfying

D̃p (
−→
∂ S̄X0

−→
∂ T̄ )`+p(S̄ΩT̄ )`+p = (

−→
∂ S̄X0

−→
∂ T̄ )`+p

(
(S̄S2)p(S̄4X3T̄ )p(S̄ΩT̄ )`

)
. (4.17)
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We deduce that D̃ should be bilinear in S̄4 and S2 and should commute with (
−→
∂ S̄X0

−→
∂ T̄ ).

In addition to that, it should have the correct scaling in X’s and should be gauge in-

variant, namely it should be well defined on the light-cone X2 = 0 and preserve the

conditions (2.14). It is not difficult to see that the choice D̃ = D/(8X01X04), where

D = (S̄4X0Σ̄NS2)
∂

∂XN
2

(4.18)

fulfills all the requirements. One has D̃(S̄ΩT̄ ) = (S̄S2)(S̄4X3T̄ ). Iterating it p times gives

the desired relation:

N `(p) ∝ D̃pN`+p(0) . (4.19)

The operator D annihilates all the scalar products with the exception of X12, in which case

we have DX12 = I2, and we define

I1 ≡ X03 J42,30, I2 ≡ X01 J42,01 . (4.20)

The action on the s, t, and u variables is

D s = X−1
12 s I2, D t = −1

2
X−1

12 (u−1 I1 + t I2), D u−1 =
1

2
X−1

12 u−1 I2 , (4.21)

on Gegenbauer polynomials is

DCλn(t) = 2λCλ+1
n−1(t)D t , (4.22)

and vanishes on J42,01 and J42,30. Using recursively the identity for Gegenbauer polynomials

n

2λ
Cλn(t)− t Cλ+1

n−1(t) = −Cλ+1
n−2(t) , (4.23)

we can write the following expression for N`(p):

N`(p) ∝ s
`
2

p∑
w=0

(
p

w

)
uw Cp+1

`−w(t) Ip−w1 Iw2 , (4.24)

where
(
p
w

)
is the binomial coefficient and for compactness we have defined the dimensionful

tensor structures Combining together eqs. (4.8), (4.9), (4.13), (4.14) and (4.24) we can

finally write

W seed(p) = ν′
p∑

w=0

(
p

w

)
1

X
a12+ w

2
12 X

a34+ p−w
2

34

∫
D4X0

Cp+1
`−w(t) Ip−w1 Iw2

X
a01+ w

2
01 X

a02+ p−w
2

02 X
a03+ p−w

2
03 X

a04+ w
2

04

∣∣∣∣
M=1

,

W
seed

(p) = ν̄′
p∑

w=0

(
p

w

)
1

X
a12+ p−w

2
12 X

a34+ w
2

34

∫
D4X0

Cp+1
`−w(t) Iw1 I

p−w
2

X
a01+ p−w

2
01 X

a02+ w
2

02 X
a03+ w

2
03 X

a04+ p−w
2

04

∣∣∣∣
M=1

(4.25)

where ν ′ and ν̄ ′ are undetermined normalization factors.
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4.2 Seed conformal blocks and their explicit form for ` = 0

The computation of the CBs G
(p)
e and G

(p)
e starting form eq. (4.25) is a non-trivial task for

generic ` and p, since we are not aware of a general formula for an integral that involves

Cp+1
`−w(t) for p 6= 0. For any given `, one can however expand the Gegenbauer polynomial,

in which case the CBs G
(p)
e and G

(p)
e can be computed. In this subsection we discuss the

structure of CBs for generic ` and compute G
(p)
e and G

(p)
e for ` = 0 and generic p.

Recalling the definition of t in eq. (4.14), one realizes that the Gegenbauer polynomials

in eq. (4.25), when expanded, do not give rise to intrinsically new integrals but just amounts

to shifting the exponents in the denominator. The tensor structures in the numerators

bring p open indices in the form XN1
0 . . . X

Np
0 , which can be removed by using eq. (3.21)

in ref. [16]. In this way the problem is reduced to the computation of scalar integrals in

2h = 2(2 + p) effective dimensions, of the form:

I
(h)
A02, A03, A04

≡
∫
D2hX0

1

XA01
01 XA02

02 XA03
03 XA04

04

∣∣∣∣
M=1

, (4.26)

where A01 + A02 + A03 + A04 = 2h. The capital A0i are used for the exponents in the de-

nomentaor with all possible shifts introduced by the Gegenbaur polynomials. This integral

is given by

I
(h)
A02, A03, A04

∝ XA04−h
13 XA02+A03−h

14 X−A02
24 Xh−A03−A04

34 ×R(h)(z, z̄; A02, A03, A04), (4.27)

where

R(h)(z, z̄; A02, A03, A04) ≡
(
− ∂

∂v

)h−1

f(z; A02, A03, A04)f(z̄; A02, A03, A04), (4.28)

f(z; A02, A03, A04) ≡ 2F1(A02 − h+ 1, −A04 + 1; −A03 −A04 + h+ 1; z). (4.29)

The derivative −∂/∂v in (z, z̄) coordinates equals

− ∂

∂v
=

1

z − z̄

(
z
∂

∂z
− z̄ ∂

∂z̄

)
. (4.30)

In the case of ` = 0, all the above manipulations simplify drastically. The Gegenbauer

polynomials Cp+1
`−w(t) vanishe for all the values w except for w = 0, leaving only one type

of tensor structure: Ip1 for W seed(p) and Ip2 for W
seed

(p). This leads to a one-to-one

correspondence between CBs and integrals:

G(p)
e ∝ Xp−e

13 Xe
34K−1

4 I
(2+p)
a02+ p

2 , a03+ p
2 , a04+e

∝(zz̄)
∆+

p
2

2 R(2+p)

(
z, z̄; a02+

p

2
, a03+

p

2
, a04+e

)
, (4.31)

G
(p)

e ∝ Xe
12X

p−e
13 K−1

4 I
(2+p)
a02+e, a03+p−e, a04+ p

2
∝(zz̄)

∆− p
2

2 +eR(2+p)

(
z, z̄; a02+e, a03+p−e, a04+

p

2

)
.

We have omitted here the relative factors between different CBs. They must be restored

if one wants to check that G
(p)
e and G

(p)
e in eq. (4.31) satisfy the Casimir system (3.16).

For generic ` the CBs are a sum of expressions like eq. (4.31) with different shifts of the

parameters A0i, weighted by the relative constants and powers of v (coming from the
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Gegenbauer polynomial). Since all these terms have p + 1 derivatives with respect to v,

the highest power in 1/(z − z̄) appearing in G
(p)
e and G

(p)
e is(

1

z − z̄

)1+2 p

. (4.32)

The asymptotic behaviour of the CBs when z, z̄ → 0 (u → 0, v → 1) for ` = 0 is easily

obtained from eq. (4.31) by noticing that R(h)(z, z̄; A02, A03, A04) is constant in this limit.

Then we have

lim
z→0, z̄→0

G(p)
e ∝ (zz̄)

∆
2

+ p
4 , lim

z→0, z̄→0
G

(p)
e ∝ (zz̄)

∆
2
− p

4
+e . (4.33)

By knowing that the CBs should be proportional to the factor in eq. (4.32), we can refine

eq. (4.33) and write

lim
z→0, z̄→0

G(p)
e ∝ (zz̄)

∆
2

+ p
4

(z − z̄)1+2p
(z1+2p − z̄1+2p) , (4.34)

lim
z→0, z̄→0

G
(p)
e ∝ (zz̄)

∆
2
− p

4
+e

(z − z̄)1+2p
(z1+2p − z̄1+2p) . (4.35)

Notice that the behavior (4.34) and (4.35) of the CBs for z, z̄ → 0 when ` = 0 is not

guaranteed to be straightforwardly extended for any ` 6= 0. Indeed, we see from eq. (4.25)

that for a given p, the generic CPW is obtained when ` ≥ p, in which case all terms in the

sum over w are present. All the values of ` < p should be treated separately.

4.3 Computing the conformal blocks for ` 6= 0

A useful expression of the CBs for generic values of ` can be obtained using eq. (4.19) and

the known closed form of W seed(0). Recall that

W seed(0) =

(
X14

X13

)b(X24

X14

)−a G
(0)
0 (Z, Z̄)

X
∆1+∆2

2
12 X

∆3+∆4
2

34

, (4.36)

where a and b are as in eq. (2.18) for p = 0 and G(0)(z, z̄) are the known scalar CBs [8, 9]

G
(0)
0 (z, z̄) = G

(0)
0 (z, z̄; ∆, l, a, b) = (−1)`

zz̄

z − z̄

(
k

(a,b;0)
∆+`

2

(z)k
(a,b;0)
∆−`−2

2

(z̄)− (z ↔ z̄)

)
, (4.37)

expressed in terms of the function5

k(a,b;c)
ρ (z) ≡ zρ 2F1(a+ ρ, b+ ρ; c+ 2ρ; z) . (4.38)

Comparing eq. (4.36) with eq. (4.25) for p = 0, one can extract the value of the shadow

integral in closed form for generic spin ` [16]:

I` ≡
∫
D4X0

C1
` (t)

Xa01
01 X

a02
02 X

a03
03 X

a04
04

∣∣∣
M=1

∝
(
X14

X13

)b(X24

X14

)−a G(0)
0 (Z, Z̄; ∆, `, a, b)

X
∆
2

12X
4−∆

2
34

. (4.39)

5We adopt here the notation first used in ref. [3] for this function, but notice the slight difference in the

definition: kthereρ = khereρ/2 .
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Using the relations (4.15) and (4.19) one can recast W seed(p) and W
seed

(p) in the form

W seed(p) ∝
DN1 . . .DNp
X
a12+ `

2
12 Xa34

34

X
`+p

2
12

∫
D4X0

C1
`+p(t)X

N1
0 . . . X

Np
0

X
a01+ p

2
01 Xa02

02 X
a03
03 X

a04+ p
2

04

∣∣∣∣
M=1

,

W
seed

(p) ∝
DN1 . . .DNp
Xa12

12 X
a34+ `

2
34

X
`+p

2
34

∫
D4X0

C1
`+p(t)X

N1
0 . . . X

Np
0

Xa01
01 X

a02+ p
2

02 X
a03+ p

2
03 Xa04

04

∣∣∣∣
M=1

, (4.40)

where D = PD|1↔3,2↔4, as follows from eq. (4.13), D = DMXM
0 , D = DMXM

0 . The

tensor integral is evaluated using SO(4, 2) Lorentz symmetry. One writes

∫
D4X0

C1
`+p(t)X

M1
0 . . . X

Mp

0

X
a01+ p

2
01 Xa02

02 X
a03
03 X

a04+ p
2

04

=
∑
n

An(Xi) τ
M1...Mp
n (Xi) , (4.41)

where n runs over all possible rank p traceless symmetric tensors τn which can be con-

structed from X1, X2, X3, X4 and ηMN ’s, with arbitrary scalar coefficients An to be de-

termined. Performing all possible contractions, which do not change the monodromy of

the integrals, the An coefficients can be solved as linear combinations of the scalar block

integrals I` defined in eq. (4.39), with shifted external dimensions.

In this way, we have computed the CBs G
(p)
e with p = 1, 2 and G

(p)
e with p = 1

for general ∆, `, a, b. We have also verified that the CBs G
(1)
e obtained from G

(1)
e using

eqs. (2.20) and (2.19) agree with those arising from the direct shadow computation. There

is a close connection among the CBs G
(p)
e and G

(p)
p−e, for any p. More on this point in

section 5. In all cases the CBs satisfy the Casimir system (3.16).

As mentioned at the end of subsection 4.2, the asymptotic behaviour of the CBs for

z, z̄ → 0 depends on whether ` ≥ p or not. For p = 1 we can expand the obtained solutions,

which for ` ≥ 1 read as

lim
z→0, z̄→0

G(1)
e ∝ (zz̄)

∆−`
2

+ 1
4

(z − z̄)3

(
z̄`+e+2 − (z ↔ z̄)

)
, ` ≥ 1 (4.42)

lim
z→0, z̄→0

G
(1)
e ∝ (zz̄)

∆−`
2
− 1

4

(z − z̄)3

(
zez̄`+3 − (z ↔ z̄)

)
, ` ≥ 1 , (4.43)

while for ` = 0 they match eqs. (4.34) and (4.35). The above relations, together with

eqs. (4.32), (4.34) and (4.35), will allow us to settle the problem of the boundary values

of the CBs for any value of p and `, that will be reported in eqs. (5.9) and (5.13). The

explicit form of G
(p)
e found for p = 2 using the shadow formalism provides a further check

of the whole derivation.

5 Solving the system of Casimir equations

The goal of this section is to find the explicit form of the conformal blocks G
(p)
e and G

(p)
e

appearing in eq. (2.17) by solving the Casimir system (3.16). In doing it we adopt and

expand the methods introduced by Dolan and Osborn in refs. [9, 27] to obtain 6D scalar

– 17 –



J
H
E
P
0
2
(
2
0
1
6
)
1
8
3

conformal blocks. We will mostly focus on the blocks G
(p)
e , since the same analysis will

apply to G
(p)
e with a few modifications that we will point out.

Before jumping into details let us outline the main logical steps of our derivation. We

first find, with the guidance of the results obtained in section 4, the behaviour of G
(p)
e and

G
(p)
e in the limit z, z̄ → 0 in which the Casimir system (3.16) can be easily solved. Using this

information and eq. (4.32), we then write an educated ansatz for the form of the CBs. Using

this ansatz, we reduce the problem of solving a system of linear partial differential equations

of second order in two variables to a system of linear algebraic equations for the unknown co-

efficients entering the ansatz. Then we show that the non-zero coefficients in the ansatz ad-

mit a geometric interpretation. They form a two-dimensional lattice with an octagon shape

structure. This interpretation allows us to precisely predict which coefficients enter in our

ansatz for any value of p. Finally, we show that the linear algebraic system admits a recur-

sive solution and we discuss the complexity of deriving full solutions for higher values of p.

5.1 Asymptotic behaviour

Not all solutions of the Casimir system (3.16) give rise to sensible CBs. The physical

CBs are obtained by demanding the correct boundary values for G
(p)
e and G

(p)
e . Possible

boundary values are given by considering the OPE limit z, z̄ → 0 of W seed(p) and W
seed

(p).

The limits of G
(p)
e and G

(p)
e for z, z̄ → 0 could be computed by a careful analysis of tensor

structures. This analysis has been partly done in section 4, where we have obtained the

boundary values of G
(p)
e and G

(p)
e for z, z̄ → 0 for special values of p and/or `. Luckily

enough, there will be no need to extend such analysis because the form of the system (3.16)

in the OPE limit, together with eqs. (4.34), (4.42) and (4.43), will clearly indicate the

general form of the boundary values of G
(p)
e and G

(p)
e .

Let us then consider the form of the conformal blocks G
(p)
e in the limit z, z̄ → 0, with

z → 0 taken first. In this limit

G(p)
e → Nez

λ(e)
z̄λ̄

(e)
, (5.1)

where Ne, λ
(e) and λ̄(e) are parameters to be determined. For simplicity of notation we

have omitted their p-dependence. The differential operators (3.8) and (3.19), when acting

on eq. (5.1) give, at leading order in z and z̄,

∆(ae,be;ce)
ε → λ(e)(λ(e) − 1) + ce(λ

(e) + λ̄(e)) + λ̄(e)(λ̄(e) − 1)− ελ(e) , (5.2)

L(µ) → 1

z̄
(λ(e) − λ̄(e)) . (5.3)

Let us now focus on the specific equation Cas
(p)
e with e = p. In the limit z, z̄ → 0 it reads

Cas(p)
p (G)→ Np

(
λ(p)(λ(p) − 1) + λ̄(p)(λ̄(p) − 1)− (p+ 2)λ(p) − 1

2
(E`,p − εpp)

)
zλ

(p)
z̄λ

(p)

+2Np−1(λ(p−1) − λ̄(p−1))zλ
(p−1)+1z̄λ̄

(p−1)
= 0 . (5.4)

For generic values of `, we have λ(e) 6= λ̄(e). Hence we cannot have λ(p−1) + 1 < λ(p)

in eq. (5.4), since this would imply that the last term dominates in the limit and Np−1

vanishes, in contradiction with the initial hypothesis (5.1).
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Let us first consider the case in which λ(p−1) +1 > λ(p), so that the terms in the second

row of eq. (5.4), coming from G
(p)
p−1, vanish. It is immediate to see that the only sensible

solution for λ(p) and λ̄(p) that reproduce the known OPE limit for the p = 0 case is

λ(p) =
∆− `

2
+
p

4
, λ̄(p) =

∆ + `

2
+
p

4
. (5.5)

Notice that eq. (5.5) agrees with the asymptotic behaviour for the CBs G
(p)
e found in

eq. (4.42) for e = p = 1 and ` ≥ 1. Consider now the equation Cas
(p)
p−1. For z, z̄ → 0 we have

Cas
(p)
p−1(G)→ Np−1

(
λ(p−1)(λ(p−1) − 1) + λ̄(p−1)(λ̄(p−1) − 1) + (λ(p−1) + λ̄(p−1))− (p+ 2)λ(p−1)

−1

2
(E`,p − εpp−1)

)
zλ

(p−1)

z̄λ̄
(p−1)

+
p

2
Np(λ

(p) − λ̄(p))zλ
(p)

z̄λ̄
(p)−1

+4Np−2(λ(p−2) − λ̄(p−2))zλ
(p−2)+1z̄λ̄

(p−2)

= 0 . (5.6)

According to eq. (4.42), we expect λ(p−2) = λ(p−1) = λ(p), λ̄p−1 = λ̄(p) − 1, λ̄p−2 = λ̄(p) − 2

in eq. (5.6). In this case the last term is higher order in z and eq. (5.6) is satisfied by

simply taking
Np−1

Np
= − `p

2(`+ p)
. (5.7)

Notice that we have tacitly assumed above that λ(p)− λ̄(p) = −` does not vanish, i.e. ` 6= 0.

For ` = 0, more care is required and one should consider the first subleading term in z̄ in

the expansion (5.1).

The above analysis can be iteratively repeated until the last equation Cas
(p)
0 is reached

and all the coefficients Ne, λ
(e) and λ̄(e) are determined. Analogously to the ` = 0 case in

eq. (5.6), all the low spin cases up to ` = p should be treated separately at some step in

the iteration, as already pointed out in subsection 4.2. Skipping the detailed derivation,

the final values of λ(e) and λ̄(e) are given by

λ(e) = λ(p) , ∀` = 0, 1, 2, . . .

λ̄(e) = λ̄(p) − (p− e) , ∀` = p− e, p− e+ 1, . . .

λ̄(e) = λ̄(p) , ∀` = 0, 1, . . . , p− e− 1 , (5.8)

where λ(p) and λ̄(p) are as in eq. (5.5) and e = 0, . . . , p − 1. The asymptotic behaviour of

the CBs in the OPE limit is given for any ` and p by

lim
z→0, z̄→0

G(p)
e ∝

(zz̄)λ
(p)

(z − z̄)1+2p

(
z̄λ̄

(e)−λ(p)+1+2p − (z ↔ z̄)
)
. (5.9)

We do not report the explicit form of the normalization factors Ne, since they will be of

no use in what follows.

We still have to consider the case in which λ(p−1) + 1 = λ(p) in eq. (5.4). By looking

at eq. (4.43), it is clear that this case corresponds to the asymptotic behaviour of the

conjugate CBs G
(p)
e . We do not report here the similar derivation of the Casimir equations
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for G
(p)
e in the OPE limit. It suffices to say that the analysis closely follows the ones made

for G
(p)
e starting now from the equation with e = 0. If we denote by

G
(p)
e → N̄ez

ω(e)
z̄ω̄

(e)
(5.10)

the boundary behaviour of G
(p)
e when z, z̄ → 0 (z → 0 taken first), one finds

ω(e) = ω(0) + e , ∀` = 0, 1, 2, . . .

ω̄(e) = ω̄(0) , ∀` = p− e, p− e+ 1, . . . (5.11)

ω̄(e) = ω̄(0) + e , ∀` = 0, 1, . . . , p− e− 1

where

ω(0) =
∆− `

2
− p

4
, ω̄(0) =

∆ + `

2
− p

4
. (5.12)

The asymptotic behaviour of the conjugate CBs are given for any ` and p by

lim
z→0, z̄→0

G
(p)
e ∝

(zz̄)ω
(e)

(z − z̄)1+2p

(
z̄ω̄

(e)−ω(e)+1+2p − (z ↔ z̄)
)
. (5.13)

5.2 The ansatz

The key ingredient of the ansatz is the function k
(a,b;c)
ρ (z) defined in eq. (4.38), which is an

eigenfunction of the hyper-geometric like operator D
(a,b;c)
z :

D(a,b;c)
z k(a,b;c)

ρ (z) = ρ (ρ+ c− 1) k(a,b;c)
ρ (z). (5.14)

Using eq. (5.14) one can define an eigenfunction of the operator ∆
(a,b;c)
0 as the product of

two k’s:

F (a,b;c)
ρ1, ρ2

(z, z̄) ≡ k(a,b;c)
ρ1

(z)k(a,b;c)
ρ2

(z̄), (5.15)

F± (a,b;c)
ρ1, ρ2

(z, z̄) ≡ F (a,b;c)
ρ1, ρ2

(z, z̄)±F (a,b;c)
ρ1, ρ2

(z̄, z). (5.16)

These functions played an important role in ref. [9] for the derivation of an analytic closed

expression of the scalar CBs in even space-time dimensions. In our case, the situation

is much more complicated, because we have different blocks appearing in the Casimir

equations. We notice, however, that the second order operator ∆ in each equation Cas
(p)
e

acts only on the block G
(p)
e , while the blocks G

(p)
e−1 and G

(p)
e+1 are multiplied by first order

operators only. Since, as we will shortly see, first order derivatives and factors of z and

z̄ acting on the functions F can always be expressed in terms of functions F with shifted

parameters, a reasonable ansatz for the CBs is to take each Ge proportional to a sum of

functions of the kind F (ae,be;ce)
ρ1, ρ2 (z, z̄) for some ρ1 and ρ2. Taking also into account eq. (4.32),

found using the shadow formalism, the form of the ansatz for the blocks G
(p)
e should be6

G(p)
e (z, z̄) =

(
zz̄

z − z̄

)2 p+1

g(p)
e (z, z̄), g(p)

e (z, z̄) ≡
∑
m,n

cem,nF
− (ae,be;ce)
ρ1+m, ρ2+n(z, z̄), (5.17)

6Recall that the conformal blocks are even under z ↔ z̄ exchange, that leaves u and v unchanged.
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where cem,n are coefficients to be determined and the sum over the two integers m and n

in eq. (5.17) is so far unspecified. Notice that all the functions F entering the sum over m

and n have the same values of ae, be and ce. Matching eq. (5.17) in the limit z, z̄ → 0 with

eq. (5.9) allows us to determine ρ1 and ρ2, modulo a shift by an integer. We take

ρ1 = λ̄(p) , ρ2 = λ(p) − p− 1 , (5.18)

in which case the sum over n is bounded from below by nmin = −p. At this value of n, we

have m(nmin) = e− p. There is no need to discuss separately the behaviour of the blocks

with ` ≤ p. Their form is still included in the ansatz (5.17) with the additional requirement

that some coefficients cem,nmin
should vanish. This condition is automatically satisfied in

the final solution. In the next subsections we will discuss the precise range of the sum over

m and n and explain how the coefficients cem,n can be determined.

5.3 Reduction to a linear system

The eigenfunctions F± (a,b;c)
ρ1, ρ2 (z, z̄) have several properties that would allow us to find a

solution to the system (3.16). In order to exploit such properties, we first have to express

the system (3.16) for G
(p)
e in terms of the functions g

(p)
e (z, z̄) defined in eq. (5.17). We plug

the ansatz (5.17) in eq. (3.16) and use the following relations

∆(a,b;c)
ε

(
zz̄

z − z̄

)k
=

(
zz̄

z − z̄

)k(
∆

(a,b;c)
ε−2k + k (k − ε+ c− 1)− k (k − ε+ 1)

zz̄(z + z̄)− 2zz̄

(z − z̄)2

)
,

L(µ)

(
zz̄

z − z̄

)k
=

(
zz̄

z − z̄

)k(
L(µ) + k

z + z̄ − 2zz̄

(z − z̄)2

)
, (5.19)

to obtain the system of Casimir equations for g
(p)
e :

C̃as
(p)

e (g) ≡ Cas0 g(p)
e + Cas+ g

(p)
e+1 + Cas− g

(p)
e−1 = 0 . (5.20)

We have split each Casimir equation in terms of three differential operators Cas0, Cas+,

Cas−, that act on g
(p)
e , g

(p)
e+1 and g

(p)
e−1, respectively. In order to avoid cluttering, we have

omitted the obvious e and p dependences of such operators. Their explicit form is as follows:

Cas0 =

(
z − z̄
zz̄

)2(
∆

(ae,be;ce)
0 + (1 + 2p)(2p− 2− e)− 1

2

(
Ep` − ε

p
e

))
−3p

z − z̄
zz̄
×
(

(1− z)∂z − (1− z̄)∂z̄

)
− p (1 + 2p)

z + z̄ − 2

zz̄
, (5.21)

Cas+ = Be
z − z̄
zz̄
× z − z̄

zz̄
L(be+1) + (1 + 2p)Be

z + z̄ − 2zz̄

zz̄

1

zz̄
, (5.22)

Cas− = Ape
z − z̄
zz̄
× (z − z̄)L(ae−1) + (1 + 2p)Ape

z + z̄ − 2zz̄

zz̄
. (5.23)

Notice that the action of ∆
(ae,be;ce)
0 in eq. (5.21) on g

(p)
e is trivial and gives just the sum

of the eigenvalues of the F− (a,b;c)
ρ1, ρ2 (z, z̄) entering g

(p)
e . It is clear from the form of the

ansatz (5.17) that the system (5.20) involves three different kinds of functions F−, with

different values of a, b and c (actually only b and c differ, recall eq. (3.18)).
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Figure 1. Set of points in the (r, t) plane forming the regions R0 (13 points), R+ (12 points) and

R− (12 points) defined in eqs. (5.24)–(5.26).

Using properties of hypergeometric functions, however, we can bring the Casimir sys-

tem (5.20) into an algebraic system involving functions F− (ae,be;ce)
ρ1+r, ρ2+t (z, z̄) only, with different

values of r and t, but crucially with the same values of ae, be and ce. In order to do that,

it is useful to interpret each of the terms entering the definitions of Cas0, Cas+ and Cas−

as an operator acting on the functions F− shifting their parameters. Their action can be

reconstructed from the more fundamental operators provided in the appendix A. For each

function F− appearing in the ansatz (5.17), we have

Cas0F −(a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R0

A0
r,t(m,n)F− (a,b;c)

ρ1+m+r, ρ2+n+t(z, z̄) , (5.24)

Cas+F− (a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R+

A+
r,t(m,n)F− (a,b+1;c+1)

ρ1+m+r, ρ2+n+t(z, z̄) , (5.25)

Cas−F− (a,b;c)
ρ1+m, ρ2+n(z, z̄) =

∑
(r,t)∈R−

A−r,t(m,n)F− (a,b−1;c−1)
ρ1+m+r, ρ2+n+t(z, z̄) , (5.26)

where A0, A− and A+ are coefficients that in general depend on all the parameters involved:

a, b, ∆, `, e and p but not on z and z̄, namely they are just constants. For future purposes,

in eqs. (5.24)–(5.26) we have only made explicit the dependence of A0, A− and A+ on the

integers m and n. The sum over (r, t) in each of the above terms runs over a given set

of pairs of integers. We report in figure 1 the values of (r, t) spanned in each of the three

regions R0, R+ and R−. We do not report the explicit and quite lengthy expression of

the coefficients A0
r,t, A

+
r,t and A−r,t, but we refer the reader again to appendix A where we

provide all the necessary relations needed to derive them. Using eqs. (5.17) and (5.24)–

(5.26), the Casimir system (5.20) can be rewritten in terms of the functions F− only, with

the same set of coefficients ae, be and ce:
7

∑
m,n

( ∑
(r,t)∈R0

A0
r,t(m,n) cem,n +

∑
(r,t)∈R+

A+
r,t(m,n) ce+1

m,n +
∑

(r,t)∈R−

A−r,t(m,n) ce−1
m,n

)
F− (ae,be;ce)
ρ1+m+r, ρ2+n+t = 0 .

(5.27)

7It is understood that c−1
m,n = cp+1

m,n = 0 in eq. (5.27).
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Figure 2. The dimensions of the generic octagon enclosing the lattice of non-vanishing coefficients

cem,n entering the ansatz for mixed tensor CBs in eq. (5.36).

The functions F− appearing in eq. (5.27) are linearly independent among each other, since

they all have a different asymptotic behaviour as z, z̄ → 0. Hence the only way to satisfy

eq. (5.27) is to demand that terms multiplying different F− vanish on their own:∑
(r,t)∈R0

A0
r,t(m

′ − r, n′ − t)cem′−r,n′−t +
∑

(r,t)∈R+

A+
r,t(m

′ − r, n′ − t)ce+1
m′−r,n′−t

+
∑

(r,t)∈R−

A−r,t(m
′ − r, n′ − t)ce−1

m′−r,n′−t = 0 , ∀m′, n′, e = 0, . . . p , (5.28)

where m′ = m+ r, n′ = n+ t. The Casimir system is then reduced to the over-determined

linear algebraic system of equations (5.28).

5.4 Solution of the system

In order to solve the system (5.28), we have to determine the range of values of (m,n)

entering the ansatz (5.17), that also determines the size of the linear system. By rewriting

the known p = 1 and p = 2 CBs found using the shadow formalism in the form of eq. (5.17),

we have deduced the range in (m,n) of the coefficients cem,n for any p (a posteriori proved

using the results below). For each value of e, the non-trivial coefficients cem,n span a two-

dimensional lattice in the (m,n) plane. For each e, the shape of the lattice is an octagon,

with p and e dependent edges. The position and shape of the generic octagon in the (m,n)

plane is depicted in figure 2. One has

nmin = − p, nmax = e+ p, mmin = e− 2 p, mmax = p . (5.29)
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Figure 3. Set of non-vanishing coefficients cem,n (represented as black dots) entering the ansatz

for mixed tensor CBs in eq. (5.36) for p = 3 and e = 0, 1, 2, 3. For e = 0 and e = p the octagons

collapse to hexagons.

For e = 0 and e = p, the octagons collapse to hexagons. The number N e
p of points inside

a generic octagon is

N e
p = 2p (2p− e) + (1 + e) (3p+ 1− e) (5.30)

and correspond to the number of non-trivial coefficients cem,n entering the ansatz (5.17).

The total number Np of coefficients to be determined at level p is then

Np ≡
p∑
e=0

N e
p = (1 + p)

(
1 +

17

6
p+

25

6
p2

)
. (5.31)

The size of the linear system grows as p3. The first values are N1 = 16, N2 = 70, N3 = 188,

N4 = 395. For illustration, we report in figure 3 the explicit lattice of non-trivial coefficients

cem,n for p = 3.
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The system (5.28) is always over-determined, since it is spanned by the values (m′, n′)

whose range is bigger than the range of (m,n) ∈ Oct(p)e (spanning all the coefficients to

be determined) due to the presence of (r, t) ∈ [−2, 2]. There are only Np − 1 linearly inde-

pendent equations, because the system of Casimir equations can only determine conformal

blocks up to an overall factor. The most important property of the system (5.28) is the

following: while the number of equations grows with p, the total number of coefficients cem,n
entering any given equation in the system (5.28) does not. This is due to the “local nearest-

neighbour” nature of the interaction between the blocks, for which at most three conformal

blocks can enter the Casimir system (3.16), independently of the value of p. More precisely,

all the equations (5.28) involve from a minimum of one coefficient cem,n up to a maximum

of 37 ones. Thirty seven corresponds to the total number of coefficients A0, A+ and A−

entering eqs. (5.24)–(5.26), see figure 1. The only coefficients that enter alone in some

equations are the ones corresponding to the furthermost vertices of the hexagons, namely

cp0,−p, c
p
0,2p, c

0
p,0, c

0
−2p,0 . (5.32)

For instance, let us take n′ = −2 − p and e = p in eq. (5.28), with m′ generic. Since

nmin = −p, a non-vanishing term can be obtained only by taking t = −2. Considering that

cp+1 = 0 and R− does not include t = −2 (see figure 1), this equation reduces to

A0
0,−2(m,−p)|e=p cpm,−p = 0 , ∀m, (5.33)

where m′ = m, since the point in R0 with t = −2 has r = 0. This equation forces all the

coefficients cpm,−p to vanish, unless the factor A0
0,−2(m,−p) vanishes on its own. One has

A0
0,−2(m,n)|e=p ∝ (m+n+ p)∆ + (m−n− p)`+m2 +

1

2
m(p− 2) + (n+ p)

(
n+

3

2
p− 2

)
.

This factor is generally non-vanishing, unless m = 0 and n = −p, in which case it vanishes

for any ∆, ` and p. In this way eq. (5.33) selects cp0,−p as the only non-vanishing coefficient

at level n = −p for e = p. Notice that it is crucial that A0
0,−2(m,n)|e=p vanishes auto-

matically for a given pair (m,n), otherwise either the whole set of equations would only

admit the trivial solution cem,n = 0, or the system would be infinite dimensional. A similar

reasoning applies for the other three coefficients. One has in particular

A0
0,2(0, 2p)|e=p cp0,2p = 0 ,

A0
2,0(p, 0)|e=0 c

0
p,0 = 0 , (5.34)

A0
−2,0(−2p, 0)|e=0 c

0
−2p,0 = 0 ,

that are automatically satisfied because the three coefficients A0
0,2, A0

2,0 and A0
−2,0 vanish

when evaluated for the specific values reported in eq. (5.34) for any ∆, ` and p.

The system (5.28) is efficiently solved by extracting a subset of Np−1 linearly indepen-

dent equations. This can be done by fixing the values (r, t) = (r∗, t∗) entering the definitions

of (m′, n′). There are 4 very special subsets of the Np− 1 equations (corresponding to very

specific values (r∗, t∗)) which allows us to determine the solution iteratively starting from
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eq. (5.28). They correspond to a solution where one of the four coefficients (5.32) is left

undetermined, in other words (r∗, t∗) can be set to be (0,−2), (0, 2), (2, 0) or (−2, 0).

For instance, if we choose c0 ≡ cp0,−p as the undetermined coefficient, a recursion relation

is found from eq. (5.28) by just singling out the term with t = −2 in A0 and setting

(r∗, t∗) = (0,−2). Such a choice leads to m′ = m, n′ = n− 2, and one finally gets

−A0
0,−2(m,n)cem,n =

∑
(r,t)∈R0

(r,t) 6=(0,−2)

A0
r,t(m− r, n− 2− t)cem−r,n−2−t

+
∑

(r,t)∈R+

A+
r,t(m− r, n− 2− t)ce+1

m−r,n−2−t (5.35)

+
∑

(r,t)∈R−

A−r,t(m− r, n− 2− t)ce−1
m−r,n−2−t .

It is understood in eq. (5.35) that cem,n = 0 if the set (m,n) lies outside the e-octagon of

coefficients. The recursion (5.35) allows us to determine all the coefficients cem,n at a given

e = e0 and n = n0 in terms of the ones cem,n with n < n0 and cem,n0
with e > e0. Hence,

starting from c0, one can determine all cem,n as a function of c0 for any p. The overall

normalization of the CBs is clearly irrelevant and can be reabsorbed in a redefinition of

the OPE coefficients. However, some care should be taken in the choice of c0 if one wants

to avoid the appearance of spurious divergencies in the CBs for specific values of ` and

∆. These divergencies are removed by a proper ∆ and ` dependent rescaling of c0. From

eq. (5.28) one can easily write the three other relations similar to eq. (5.35) to determine

recursively cem,n starting from cp0,2p, c
0
p,0 or c0

−2p,0.

We can finally write down the full analytic solution for the CBs G
(p)
e :

G(p)
e (z, z̄) =

(
zz̄

z − z̄

)2 p+1 ∑
(m,n)∈Oct(p)e

cem,nF
− (ae,be;ce)
∆+`+

p
2

2
+m,

∆−`+ p
2

2
−(p+1)+n

(z, z̄), (5.36)

where cem,n satisfy the recursion relation (5.35) (or any other among the four possible ones)

and (m,n) runs over the points within the e-octagon depicted in figure 2.

A similar analysis can be performed for the conjugate blocks G
(p)
e . We do not report

here the detailed derivation that is logically identical to the one above, but just the final

solution:

G
(p)
e (z, z̄) =

(
zz̄

z − z̄

)2 p+1 ∑
(m,n)∈Oct(p)p−e

c̄em,nF
− (ae,be;ce)
∆+`− p2

2
+e+m,

∆−`− p2
2

+e−(p+1)+n
(z, z̄). (5.37)

where

c̄em,n(a, b,∆, l, p) = 4ecp−em,n

(
− a+

p

2
,−b− p

2
,∆, l, p

)
. (5.38)

Generating the full explicit solution from eq. (5.35) can be computationally quite de-

manding for large values of p. For concreteness, we only report in appendix B the

explicit form of the 16 coefficients cem,n for p = 1 and a = −b = 1/2. The gen-

eral form of cem,n for p = 1, 2, 3, 4 and any a, b, ∆ and ` can be downloaded from

– 26 –



J
H
E
P
0
2
(
2
0
1
6
)
1
8
3

https://sites.google.com/site/dskarateev/downloads. The blocks G
(p)
e for p = 1, 2 and G

(p)
e

for p = 1 are in complete agreement with those computed using the shadow formalism. By

choosing specific values for the parameters a and b, we also have determined the coefficients

cem,n up to p = 8, i.e. the value of p that is obtained in the 4-point function of four energy

momentum tensors, see eq. (2.6).

It is important to remind the reader that the CBs G
(p)
e computed here are supposed

to be the seed blocks for possibly other 4-point correlation functions, whose CBs are de-

termined by acting with given operators on G
(p)
e [25]. The complexity of the form of the

blocks G
(p)
e at high p is somehow compensated by the fact that the operators one has to

act with become simpler and simpler, the higher is p. An example should clarify the point.

Let us consider a 4-point function of spin two operators. In this case, one has to deter-

mine conformal blocks associated to the exchange of operators O(`,`+p) (and O(`+p,`)
) for

p = 0, 2, 4, 6, 8 (and any `). The conformal blocks associated to the traceless symmetric

operators are obtained by applying up to 8 derivative operators in several different com-

binations to the scalar CB G
(0)
0 . Despite the seed block is very simple, the final blocks

are given by (many) complicated sum of derivatives of G
(0)
0 . The p = 8 CBs, instead, are

essentially determined by the very complicated G
(8)
e (and G

(8)
e ) blocks, but no significant

extra complications come from the external operators. An example of such phenomenon

in a four fermion correlator is shown (though in a less significative way) in section 7.1 of

ref. [25]. For any given 4-point function, after the use of the differential operators intro-

duced in ref. [25], there is no need to compute the coefficients cem,n for any a and b but only

for the values of interest. This considerably simplifies the expression of cem,n.

5.5 Analogy with scalar conformal blocks in even dimensions

It is worth pointing out in more detail some similarities between the CBs G
(p)
e for mixed

symmetry tensors computed above and the scalar conformal blocks Gd in d > 2 even space-

time dimensions (G4 = G
(0)
0 in our previous notation). The quadratic Casimir equation for

scalar CBs in any number of dimensions is

∆
(a,b;0)
d−2 Gd(z, z̄) =

1

2
E`(d)Gd(z, z̄) , (5.39)

where

E`(d) = ∆ (∆− d) + `(`+ d− 2) (5.40)

is the quadratic Casimir eigenvalue for traceless symmetric tensors. The explicit analytical

form of scalar blocks in d = 2, 4, 6 dimensions has been found in refs. [8, 9]. The same

authors also found a relation between scalar blocks in any even space-time dimensionality,

eq. (5.4) of ref. [9] (see also the more elegant eq. (4.36) of ref. [27]), that allows us to

iteratively determine Gd for any d, starting from G2. The d = 4 and d = 6 solutions found

in ref. [9] have the form

Gd(z, z̄) =

(
zz̄

z − z̄

)d−3

gd(z, z̄) , gd(z, z̄) =
∑
m,n

xm,nF− (a,b;0)
∆+`

2
+m, ∆−`+2−d

2
+n

(z, z̄), (5.41)
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Figure 4. The dimensions of the generic slanted square enclosing the lattice of non-vanishing

coefficients xm,n entering the ansatz for scalar symmetric CBs in eq. (5.41).

where a and b are as in eq. (2.18) with p = 0 and xm,n are coefficients that in general

depend on ∆, l, a and b. In d = 4 there is only one non-vanishing coefficient centered at

(m,n) = (0, 0), while in d = 6 there are five of them. They are at (m,n) = (0,−1), (−1, 0),

(0, 0), (1, 0) and (0, 1). These five points form a slanted square in the (m,n) plane, centered

at the origin. The explicit form of the coefficients xm,n is known, but it will not be needed

in what follows.8 It is natural to expect that eq. (5.41) should apply for any even d ≥ 4,

with a number of non-vanishing coefficients that increases with d.9 This is not difficult to

prove. From the first relation in eq. (5.19) we can get the form of the Casimir equation for

the function gd(z, z̄) defined in eq. (5.41), that can be written as(
1

z̄
− 1

z

)(
∆

(a,b;0)
0 + 6− 2d− 1

2
E`(d)

)
gd = (d− 4)

(
(1− z)∂z − (1− z̄)∂z̄

)
gd . (5.42)

Using the techniques explained in subsection 5.3 and the results of appendix A, it is now

straightforward to identify which is the range of (m,n) of the non-vanishing coefficients

xm,n for any d (see figure 4).10 In d dimensions, the minimum and maximum values of m

and n are given by

nmin =
4− d

2
, nmax =

d− 4

2
, mmin =

4− d
2

, mmax =
d− 4

2
. (5.43)

8En passant, notice that there is a typo in eq. (2.20) of ref. [9] where the block G6 is reported. In

the denominator appearing in the last row of that equation, one should replace (∆ + ` − 4)(∆ + ` − 6) →
(∆− `− 4)(∆− `− 6).

9See also ref. [23], where similar considerations were conjectured.
10Alternatively, one might use eq. (4.36) of ref. [27] to compute Gd and then recast it in the form (5.41).
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The number Ñd of coefficients xm,n entering the ansatz (5.41) for scalar blocks in d even

space-time dimensions is easily computed by counting the number of lattice points enclosed

in the slanted square. We have

Ñd =
d2

2
− 3d+ 5 . (5.44)

For large d, Ñd ∝ d2 and matches the behavior of Np
e ∝ p2 for large p in eq. (5.30).

In light of the above analogy between scalar CBs Gd in even d dimensions and mixed

tensor CBs G
(p)
e in four dimensions, it would be interesting to investigate whether there

exist a set of differential operators that links the blocks G
(p+1)
e (or G

(p+2)
e ) to the blocks

G
(p)
e , in analogy to the operator (4.35) of ref. [27] relating Gd+2 to Gd. It would be very

useful to find, in this or some other way, a more compact expression for the blocks G
(p)
e .

Let us finally emphasize a technical, but relevant, point where the analogy between

Gd in d dimensions and G
(p)
e in 4 dimensions does not hold. A careful reader might have

noticed that in the Casimir equation for gd the term proportional to (z+ z̄)−2, namely the

third term in the r.h.s. of the first equation in eq. (5.19), automatically vanishes. Indeed, if

we did not know the power d−3 in the ansatz (5.41), we could have guessed it by demanding

that term to vanish. On the contrary, no such simple guess seems to be possible for the

power 2p+1 entering G
(p)
e , given also the appearance of the operator L defined in eq. (5.19).

As discussed, we have fixed the power 2p+ 1 by means of the shadow formalism.

6 Summary and conclusions

We have computed in this paper the seed CBs G
(p)
e (and G

(p)
e ) associated to the exchange of

mixed symmetry bosonic and fermionic primary operators O(`,`+p) (andO(`+p,`)
) in the four

point functions (2.16). We have found a totally general expression for G
(p)
e for any e, p, ∆,

` and external scaling dimensions, by solving the Casimir set of differential equations, that

can be written in the compact form (3.16). The shadow formalism has been of fundamental

assistance to deduce it and also as a useful cross check for the validity of the results. The

final expression for the CBs is given in eq. (5.36), the most important formula in the paper.

The CBs are expressed in terms of coefficients cem,n, that can be determined recursively, e.g.

by means of eq. (5.35). For each CB, the coefficients cem,n span a 2D octagon-shape lattice

in the (m,n) plane, with sizes that depend on p and e and increase as p increases. We have

reported in appendix B the explicit form of cem,n for the simplest case p = 1. We have not

reported the cem,n for higher values of p, since their number and complexity grows with p.

Their explicit form up to p = 4 can be downloaded from a website. The CBs up to p = 4

are enough to bootstrap many tensor correlators, including four conserved spin 1 currents.

Aside from the obvious application in the numerical bootstrap, the knowledge of the

CBs G
(p)
e should be useful in other contexts. Having analytical closed expressions for the

blocks should be very useful to generalize the so called analytic bootstrap approach [36, 37]

to tensor correlators. It would also be interesting to explore holographic interpretations in

AdS5 of the CBs G
(p)
e and their possible utility in the formulation of higher spin theory

in AdS5. It should be interesting, for bootstrap applications, to systematically study the

correlation functions associated to the free theories of (p, 0) spinor/tensor fields, that admit
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a particle interpretation [38]. Indeed, aside from the interest per se, this study might give

a useful analytically known benckmark point for future bootstrap analysis involving the

CBs G
(p)
e found in this paper, very much like the role that free scalar theories play in actual

analytical and numerical studies.

The somewhat surprisingly simple form of the Casimir system (3.16), where at most

three blocks at a time can enter in a sort of local interaction, and the geometric interpre-

tation of the coefficients cem,n in terms of octagons, are perhaps an indication of a more

fundamental symmetry principle. This should hopefully allows us to gain a better under-

standing of 4D CFTs or at least, less ambitiously, more compact expressions for the CBs

G
(p)
e . Even in absence of a would be underlying symmetry, it is well possible that there is

a better way to parametrize the blocks that we might have overlooked.
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A Properties of the F functions

In this appendix we provide all the properties of the functions F (a,b;c)
ρ1, ρ2 needed for the system

of Casimir equations and more specifically to derive eqs. (5.24)–(5.26). We will not consider

the functions F± (a,b;c)
ρ1, ρ2 here, since their properties can trivially be deduced from the ones

below by demanding both sides to be symmetric/anti-symmetric under the exchange z ↔ z̄.

The fundamental identities to be considered can be divided in two sets, depending

on whether the values (a, b, c) of the functions F are left invariant or not. The former

identities read(
1

z
− 1

2

)
F (a,b;c)
ρ1,ρ2

= F (a,b;c)
ρ1−1,ρ2

−D(a,b,c)
ρ1

F (a,b;c)
ρ1,ρ2

+B(a,b,c)
ρ1

F (a,b;c)
ρ1+1,ρ2

(A.1)(
1

z̄
− 1

2

)
F (a,b;c)
ρ1,ρ2

= F (a,b;c)
ρ1,ρ2−1 −D

(a,b,c)
ρ2

F (a,b;c)
ρ1,ρ2

+B(a,b,c)
ρ2

F (a,b;c)
ρ1,ρ2+1 (A.2)

L0F (a,b;c)
ρ1,ρ2

= ρ2F (a,b;c)
ρ1,ρ2−1 − ρ1F (a,b;c)

ρ1−1,ρ2
− (ρ2 + c− 1)B(a,b,c)

ρ2
F (a,b;c)
ρ1,ρ2+1 + (A.3)

+(ρ1 + c− 1)B(a,b,c)
ρ1

F (a,b;c)
ρ1+1,ρ2

+
1

2
(2− c)(D(a,b,c)

ρ1
−D(a,b,c)

ρ2
)F (a,b;c)

ρ1,ρ2
,

where L0 =
(

(1− z̄)∂z̄ − (1− z)∂z

)
and we have defined

C(a,b,c)
ρ =

(a+ ρ)(b− c− ρ)

(c+ 2ρ)(c+ 2ρ− 1)
, (A.4)

B(a,b,c)
ρ = C(a,b,c)

ρ C
(b−1,a,c−1)
ρ+1 =

(ρ+ a)(ρ+ b)(ρ+ c− b)(ρ+ c− a)

(2ρ+ c)2(c+ 2ρ+ 1)(c+ 2ρ− 1)
,
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D(a,b,c)
ρ =

(2a− c)(2b− c)
2(c+ 2ρ)(c+ 2ρ− 2)

. (A.5)

The latter identities read

F (a,b;c)
ρ1,ρ2

= F (a,b−1;c−1)
ρ1,ρ2

− C(a,b,c)
ρ1

F (a,b−1;c−1)
ρ1+1,ρ2

(A.6)

−C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1,ρ2+1 + C(a,b,c)

ρ1
C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1+1,ρ2+1 ,

F (a,b;c)
ρ1,ρ2

= F (a−1,b;c−1)
ρ1,ρ2

− C(b,a,c)
ρ1

F (a−1,b;c−1)
ρ1+1,ρ2

(A.7)

−C(b,a,c)
ρ2

F (a−1,b;c−1)
ρ1,ρ2+1 + C(b,a,c)

ρ1
C(b,a,c)
ρ2

F (a−1,b;c−1)
ρ1+1,ρ2+1 ,

1

zz̄
F (a,b;c)
ρ1,ρ2

= F (a+1,b+1;c+2)
ρ1−1,ρ2−1 , (A.8)

(z − z̄)L(a)F (a,b;c)
ρ1,ρ2

= (ρ2 − ρ1)F (a,b−1;c−1)
ρ1,ρ2

− (ρ1 + ρ2 + c− 1)C(a,b,c)
ρ1

F (a,b−1;c−1)
ρ1+1,ρ2

+ (A.9)

+(ρ1 + ρ2 + c− 1)C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1,ρ2+1 − (ρ2 − ρ1)C(a,b,c)

ρ1
C(a,b,c)
ρ2

F (a,b−1;c−1)
ρ1+1,ρ2+1 ,

z − z̄
zz̄

L(b)F (a,b;c)
ρ1,ρ2

= (ρ2 − ρ1)F (a,b+1;c+1)
ρ1−1,ρ2−1 − (ρ1 + ρ2 + c− 1)C(b,a,c)

ρ1
F (a,b+1;c+1)
ρ1,ρ2−1 + (A.10)

+(ρ1 + ρ2 + c− 1)C(b,a,c)
ρ2

F (a,b+1;c+1)
ρ1−1,ρ2

− (ρ2 − ρ1)C(b,a,c)
ρ1

C(b,a,c)
ρ2

F (a,b+1;c+1)
ρ1,ρ2

.

The relations (A.1)–(A.3) were first derived in ref. [9] (see also ref. [27]), while the rela-

tions (A.9) and (A.10) are novel to this paper. It is straightforward to see that eqs. (5.24)–

(5.26) can be derived using proper combinations of eqs. (A.1)–(A.10). For instance, the

action of the first term appearing in the r.h.s. of eq. (5.23) is reproduced (modulo a trivial

constant factor) by taking the combined action given by ((A.2)–(A.1))× (A.9)× (A.6). All

other terms in eqs. (5.21)–(5.23) are similarly deconstructed.

B The conformal blocks for p = 1

We report in this appendix the full explicit solution for the two conformal blocks G
(1)
0 and

G
(1)
1 associated to the exchange of fermion operators of the kind O(`,`+1) for the specific

values

a =
1

2
, b = −1

2
. (B.1)

We choose as undetermined coefficient c1
0,−1 and report below the values of the coefficients

normalized to c1
0,−1. We have

c0
−2,0 =

(2 + `)

2 (1 + `)
, c0
−1,−1 = − `

2 (1 + `)
, c1
−1,0 = −(3 + `)

1 + `
. (B.2)

c0
−1,0 =

(3 + `)(−1 + 2∆)(−1 + 2`+ 2∆)

8(1 + `)(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
−1,1 = − (2 + `)(5 + 2`− 2∆)2(−7 + 2∆)

32(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)
,

c0
0,−1 = −(−1 + 2∆)(−1 + 2`+ 2∆)

8(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
0,0 =

`(−7 + 2∆)(−1 + 2`+ 2∆)2

32(1 + `)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
,
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c0
0,1 = − (3 + `)(5 + 2`− 2∆)2(−5 + 2∆)(−1 + 2`+ 2∆)

128(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)(1 + 2`+ 2∆)
,

c0
1,0 =

(−5 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)2

128(−3 + 2∆)(1 + 2`+ 2∆)2(5 + 2`+ 2∆)
,

c1
−1,1 = − (2 + `)(5 + 2`− 2∆)(−1 + 2∆)

4(1 + `)(7 + 2`− 2∆)(−3 + 2∆)
,

c1
0,2 =

(2 + `)(1 + 2`− 2∆)(5 + 2`− 2∆)2(−5 + 2∆)

64(1 + `)(3 + 2`− 2∆)2(7 + 2`− 2∆)(−3 + 2∆)
,

c1
1,0 = −(−7 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)

16(−3 + 2∆)(1 + 2`+ 2∆)2
,

c1
1,1 = −`(5 + 2`− 2∆)(−5 + 2∆)(−1 + 2`+ 2∆)(3 + 2`+ 2∆)

64(1 + `)(7 + 2`− 2∆)(−3 + 2∆)(1 + 2`+ 2∆)2

c1
0,0 =

1

4(1 + `)(11 + 2`− 2∆)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
×

×
(

576− 384∆ + `
(

627− 2`(−29 + 2`(7 + 2`))− 472∆ + 4`(−47 + 4`(3 + `))∆

+8(−9 + `(19 + 2`))∆2 − 16(−6 + `)∆3 − 16∆4
))

,

c1
0,1 =

(5 + 2`− 2∆)

16(1 + `)(3 + 2`− 2∆)(7 + 2`− 2∆)(−3 + 2∆)(−3 + 2`+ 2∆)(1 + 2`+ 2∆)
×

×
(
`(643− 14`(−3 + 2`(9 + 2`))) + 4`(−232 + `(−115 + 4`(1 + `)))∆ + 8(3 + `)

×(−24 + `(17 + 2`))∆2 − 16(−7 + `)(3 + `)∆3 − 16(3 + `)∆4 + 27(9 + 4∆)

)
.

The asymptotic behaviour of the CBs for z, z̄ → 0 (z → 0 first) is dominated by the co-

efficients with n = −1 and the lowest value of m, i.e. c0
−1,−1 and c1

0,−1. For ` = 0, the

asymptotic behaviour of G
(1)
0 is given by the next term c0

0,−1, since c0
−1,−1 in eq. (B.2) van-

ishes. This in agreement with the asymptotic behaviour of the CBs found in subsection 5.1.

Notice how the complexity of the cem,n varies from coefficient to coefficient. In general the

most complicated ones are those in the “interior” of the octagons (hexagons only for p = 1).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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