42 research outputs found

    Validation of Geometry Modelling Approaches for Offshore Gas Dispersion Simulations

    Get PDF
    PresentationComputational Fluid Dynamics (CFD) codes are widely used for gas dispersion studies on offshore installations. The majority of these codes use single-block Cartesian grids with the porosity/distributed-resistance (PDR) approach to model small geometric details. Computational cost of this approach is low since small-scale obstacles are not resolved on the computational mesh. However, there are some uncertainties regarding this approach, especially in terms of grid dependency and turbulence generated from complex objects. An alternative approach, which can be implemented in general-purpose CFD codes, is to use body-fitted grids for medium to large- scale objects whilst combining multiple small-scale obstacles in close proximity and using porous media models to represent blockage effects. This approach is validated in this study, by comparing numerical predictions with large-scale gas dispersion experiments carried out in DNV GL’s Spadeadam test site. Gas concentrations and gas cloud volumes obtained from simulations are compared with measurements. These simulations are performed using the commercially available ANSYS CFX, which is a general-purpose CFD code. For comparison, further simulations are performed using CFX where small-scale objects are explicitly resolved. The aim of this work is to evaluate the accuracy and efficiency of these different geometry modelling approaches

    A comparison of Bayesian localization methods in the presence of outliers

    Get PDF
    Localization of a user in a wireless network is challenging in the presence of malfunctioning or malicious reference nodes, since if they are not accounted for, large localization errors can ensue. We evaluate three Bayesian methods to statistically identify outliers during localization: an exact method, an expectation maximization (EM) method proposed earlier, and a new method based on Variational Bayesian EM (VBEM). Simulation results indicate similar performance for the latter two schemes, with the VBEM algorithm able to provide a statistical description of the user location, rather than an estimate as in the simpler EM case. In contrast to previous studies, we find that there is a significant gap between the approximate methods and the exact method, the cause of which is discussed

    Construction of the effective action in nonanticommutative supersymmetric field theories

    Get PDF
    We develop a general gauge invariant construction of the one-loop effective action for supersymmetric gauge field theories formulated in N=1/2{\cal N}=1/2 superspace. Using manifestly covariant techniques (the background superfield method and proper-time representations) adopted to the N=1/2{\cal N}=1/2 superspace we show how to define unambiguously the effective action of a matter multiplet (in fundamental and adjoint representations) and the vector multiplet coupled to a background N=1/2{\cal N}=1/2 gauge superfield. As an application of this construction we exactly calculate the low-energy one-loop effective action of matter multiplet and SU(2) SYM theory on the Abelian background.Comment: 14 pages, LaTe

    Chiral effective potential in N=1/2{\cal N}={1/2} non-commutative Wess-Zumino model

    Full text link
    We study a structure of holomorphic quantum contributions to the effective action for N=1/2{\cal N}={1/2} noncommutative Wess-Zumino model. Using the symbol operator techniques we present the one-loop chiral effective potential in a form of integral over proper time of the appropriate heat kernel. We prove that this kernel can be exactly found. As a result we obtain the exact integral representation of the one-loop effective potential. Also we study the expansion of the effective potential in a series in powers of the chiral superfield Φ\Phi and derivative D2ΦD^2{\Phi} and construct a procedure for systematic calculation of the coefficients in the series. We show that all terms in the series without derivatives can be summed up in an explicit form.Comment: LaTeX, JHEP style, 32 pages, typos corrected, references adde

    Next-to-next-to-leading order prediction for the photon-to-pion transition form factor

    Get PDF
    We evaluate the next-to-next-to-leading order corrections to the hard-scattering amplitude of the photon-to-pion transition form factor. Our approach is based on the predictive power of the conformal operator product expansion, which is valid for a vanishing β\beta-function in the so-called conformal scheme. The Wilson--coefficients appearing in the non-forward kinematics are then entirely determined from those of the polarized deep-inelastic scattering known to next-to-next-to-leading accuracy. We propose different schemes to include explicitly also the conformal symmetry breaking term proportional to the β\beta-function, and discuss numerical predictions calculated in different kinematical regions. It is demonstrated that the photon-to-pion transition form factor can provide a fundamental testing ground for our QCD understanding of exclusive reactions.Comment: 62 pages LaTeX, 2 figures, 9 tables; typos corrected, some references added, to appear in Phys. Rev.

    Effective Lagrangian for sˉbg\bar{s}bg and sˉbγ\bar{s}b\gamma Vertices in the mSUGRA model

    Full text link
    Complete expressions of the sˉbg\bar{s}bg and sˉbγ\bar{s}b\gamma vertices are derived in the framework of supersymmetry with minimal flavor violation. With the minimal supergravity (mSUGRA) model, a numerical analysis of the supersymmetric contributions to the Wilson Coefficients at the weak scale is presented.Comment: 12 pages + 7 ps figures, Late

    Search for invisible decays of the Higgs boson produced in association with a hadronically decaying vector boson in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for Higgs boson decays to invisible particles is performed using 20.3 fb −1 of pp collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the Large Hadron Collider. The process considered is Higgs boson production in association with a vector boson (V=W or Z) that decays hadronically, resulting in events with two or more jets and large missing transverse momentum. No excess of candidates is observed in the data over the background expectation. The results are used to constrain VH production followed by H decaying to invisible particles for the Higgs boson mass range 115<mH<300 GeV. The 95 % confidence-level observed upper limit on σVH×BR(H→inv.) varies from 1.6 pb at 115 GeV to 0.13 pb at 300 GeV. Assuming Standard Model production and including the gg→H contribution as signal, the results also lead to an observed upper limit of 78 % at 95 % confidence level on the branching ratio of Higgs bosons decays to invisible particles at a mass of 125 GeV

    Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at √s = 8 TeV using the ATLAS experiment

    Get PDF
    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 8.4 fb −1 −1 of pp collisions at s √ =8 s=8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 % % confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV
    corecore