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Abstract—Localization of a user in a wireless network is chal-
lenging in the presence of malfunctioning or malicious reference
nodes, since if they are not accounted for, large localization errors
can ensue. We evaluate three Bayesian methods to statistically
identify outliers during localization: an exact method, an expec-
tation maximization (EM) method proposed earlier, and a new
method based on Variational Bayesian EM (VBEM). Simulation
results indicate similar performance for the latter two schemes,
with the VBEM algorithm able to provide a statistical description
of the user location, rather than an estimate as in the simpler
EM case. In contrast to previous studies, we find that there is a
significant gap between the approximate methods and the exact
method, the cause of which is discussed.

Index Terms—localization, outliers, Bayesian methods, wireless
networks.

I. INTRODUCTION

Localization of nodes in a wireless network has many
applications, ranging from personal navigation, over military
tracking and monitoring, to automated driving. Localization
can be in either an absolute or relative frame of reference. In
absolute localization, users (referred to as agents) collect mea-
surements with respect to fixed reference nodes (or anchors).
These anchors have a known location, so that measurements
in the form of distance or angle can provide absolute location
information to the agent.

Under normal operating conditions, anchors would provide
reliable information, both in terms of their own location,
but also in terms of the measurements. However, in certain
conditions, anchors may be compromised or malfunctioning,
leading them to provide incorrect location or measurement
information. If not accounted for properly, these anchors
can lead the agent to compute an erroneous location, with
an ensuing impact on the higher-level application. For this
reason, outlier detection in wireless networks has received
great attention, especially for safety-critical applications.

In order to mitigate the effect of malfunctioning/malicious
anchors, several methods to detect them have been proposed
[1]–[8]. In particular, [1] and [2] consider generic outlier
detection for wireless sensor networks and provide a taxonomy
of different approaches. In the context of localization, [3]
applies convex optimization followed by a geometric approach
to identify malfunctioning anchors. As an example of attack-
resistant localization, [4] resorts to a cooperative approach,
using optimization with dedicated Huber loss function. Using

linear equations to describe the localization problem with an
l1 norm, linear programming can be used to avoid outliers
measurements in the agent location estimation [5]. Alterna-
tively, since the effect of outliers can be treated as errors in
the transmitted data, error correcting codes have also been pro-
posed [6], where iteratively, the region of interest is split into
regions and a hypothesis test is performed at the fusion center,
which receives data from each sensor. In contrast to the above
optimization approaches, Bayesian methods were considered
in [7], [8]: [7] considered message passing algorithm based on
probabilistic graphical models for identifying outliers, while
[8] applied the EM algorithm to perform joint localization
and outlier detection and reported similar performance to [7]
with reduced complexity. However, the EM method does not
provide a distribution of the agent location, only an estimate.

In this paper, we extend [8] to a VBEM method, which
provides a statistical description of the agent location, rather
than only an estimate as in the simpler EM case. Since, through
the VBEM approach, a complete distribution is obtained, an
estimate of the user location but also information about the
uncertainty in such estimate are provided. We also make an
in-depth comparison between three methods: an exact method,
an EM method, and a method based on VBEM. Each method
is evaluated in terms of the localization performance and
also in terms of the ability to identify outliers. In contrast
to [8], we find a significant performance gap between the
exact method and the two approximate methods. Our analysis
provides insight into the underlying reason for this gap as well
as suggestions on how it may be closed.

II. SYSTEM MODEL

We consider a wireless network with a single agent and N
anchors deployed over region R ⊆ R2. Let θ ∈ R be the
agent position with Gaussian prior p(θ), with mean µp and
covariance matrix Σp, and an ∈ R be the n-th anchor position
in the two-dimensional space. The agent localizes itself by
estimating the distance ‖an−θ‖ with respect to every anchor.
Different types of measurement techniques can be employed,
including distance estimation from received signal strength,
time-of-arrival, or angle-of-arrival. We denote by ρn the dis-
tance estimated by the agent with respect to anchor n. Each
anchor is in one of the two states sn ∈ {0, 1}, where sn = 0
represents the state of a well-functioning anchor, whereas
sn = 1 means that the anchor is not functioning properly.



The state sn is assumed to have a Bernoulli distribution, and
it is independent across anchors:

p(sn) = δsn(1− δ)1−sn . (1)

where δ is the probability of an anchor to be malfunctioning.
The ranging error model depends on the state of the anchors.
In particular, we assume

p(ρn|sn = 0;θ) = f(ρn,θ) ,

1√
2πσ2

n

exp
(
− (ρn − ‖an − θ‖)2

2σ2
n

)
, (2)

while p(ρn|sn = 1;θ) = c, where c is an appropriate constant
(for instance c = 1/Rmax, where Rmax is the maximum value
of ρn). In other words, for well-functioning anchors, the dis-
tance estimation error has a zero-mean Gaussian distribution,
while, for malfunctioning anchors, distance estimates can fall
with equal probability anywhere within a certain range.

After collecting the distance estimates ρ =
[ρ1, ρ2, . . . , ρN ]T and ranging qualities σ = [σ1, σ2, . . . , σN ]T

from the anchors, the agent has a goal to determine its
posterior distribution p(θ|ρ).

We will assume a positioning method is available that can
compute p(θ|ρ) when there are no malfunctioning anchors.
Hence, such a method is able to efficiently compute

p(θ|ρ) = p(θ)

N∏
n=1

f(ρn,θ) (3)

in the form of a suitable approximation, e.g., a Gaussian
distribution.

III. THREE BAYESIAN METHODS

In this section, we present three Bayesian methods for
localizing the agent: an exact method, an EM method, and
a VBEM method.

A. Exact Method

Introducing s = [s1, . . . , sN ]T , we can determine p(θ|ρ)
by taking the expectation over the state of each anchor. This
leads to

p(θ|ρ) =
∑

s∈{0,1}N
p(θ, s|ρ)

∝
∑

s∈{0,1}N
p(ρ|θ, s)p(θ)p(s)

= p(θ)
∑

s∈{0,1}N

N∏
n=1

p(ρn|θ, sn)p(sn)

= p(θ)

N∏
n=1

∑
sn∈{0,1}

p(ρn|θ, sn)p(sn)

= p(θ)

N∏
n=1

(δc+ (1− δ)f(ρn,θ)), (4)

where we have used the a priori independence of the anchors’
states and the agent’s location, as well as the mutual indepen-
dence of the anchors’ states.

Remark 1. Expression (4) is not part of the standard form.
On inspection, we see that p(θ|ρ) can be expressed as mixture
of 2N components of the form (3). Hence, it is hard to evaluate
for large N .

B. Expectation Maximization Method

The EM method is an iterative method for determining the
MAP estimate of θ in the presence of a hidden variable, under
the assumption that estimation would be easy if the hidden
variable was known [9, Chapter 9]. In our case, s is the hidden
variable. The EM algorithm starts from an initial estimate θ̂0
and produces estimates θ̂t with p(θ̂t|ρ) ≥ p(θ̂t−1|ρ).

During iteration t, in the E-step, we determine

q(t)(θ) ∝ exp

 ∑
s∈{0,1}N

q(t)s (s) ln p(θ|s,ρ)


∝ p(θ) exp

 ∑
s∈{0,1}N

q(t)s (s) ln p(ρ|θ, s)


= p(θ)

N∏
n=1

exp

 ∑
sn∈{0,1}

q(t)sn (sn) ln p(ρn|θ, sn)


= p(θ)

N∏
n=1

exp
(
q(t)sn (0) ln f(ρn,θ) + q(t)sn (1) ln c

)
∝ p(θ)

N∏
n=1

f(ρn,θ)
q(t)sn

(0), (5)

where q
(t)
s (s) = p(s|θ̂t−1,ρ) and q

(t)
sn (sn) is the marginal

distribution of q(t)s (s) for sn. These are related by

q(t)s (s) = p(s|θ̂t−1,ρ)
∝ p(s)p(ρ|θ̂t−1, s)

=

N∏
n=1

p(sn)p(ρn|θ̂t−1, sn)︸ ︷︷ ︸
∝q(t)sn (sn)

. (6)

In the M-step, we maximize q(t)(θ) with respect to θ:

θ̂t = argmax
θ

q(t)(θ). (7)

Remark 2. We notice that in (5), we can express

f(ρn,θ)
q(t)sn

(0) ∝ exp
(
− (ρn − ‖an − θ‖)2

2σ2
n/q

(t)
sn (0)

)
. (8)

In other words, the ranging variance is increased by a factor
1/q

(t)
sn (0). This implies that q(t)(θ) can be computed efficiently

using (3). The EM method can thus be easily implemented, but
fails to provide a posterior distribution of the user location.



Remark 3. The EM algorithm will consider an anchor more
likely to be malfunctioning when q(t)sn (0) < q

(t)
sn (1). It is readily

verified that this happens when(
ρn − ‖an − θ̂t‖

)2
2σ2

> log

(
1− δ

δc
√
2πσ2

)
. (9)

Hence, in order to have reasonable positioning performance,
the estimate θ̂t should be such that for at least 3 good anchors,
the condition (9) is satisfied.

C. Variational Bayesian EM Method

The VBEM method [9, Chapter 10] aims to approximate
p(θ, s|ρ) by a distribution of the form qθ(θ)qs(s) in such
a way as to minimize the Kullback-Leibler divergence [10,
Chapter 2]:

D(qθ(θ)qs(s)‖p(θ, s|ρ))

=
∑
s

∫
qθ(θ)qs(s) log

qθ(θ)qs(s)

p(θ, s|ρ)
dθ, (10)

so that the optimal solution is given by solving

[q∗θ(θ), q
∗
s (s)]

= arg min
qθ(θ),qs(s)

D(qθ(θ)qs(s)‖p(θ, s|ρ)). (11)

The problem (11) can be solved iteratively, starting from an
initial guess q(0)s (s). It can be verified that the solution takes
the following fixed-point expression:

q
(t)
θ (θ) ∝ p(θ)

N∏
n=1

(f(ρn,θ))
q(t−1)
sn

(0), (12)

where q(t)s (s) =
∏N
n=1 q

(t)
sn (sn), and

q(t)sn (sn) ∝ p(sn) exp
[ ∫

ln p(ρn|sn,θ)q(t)θ (θ)dθ

]
. (13)

Note that (13) evaluates to

q(t)sn (sn) (14)

=

(1− δ) exp
[ ∫

ln f(ρn,θ)q
(t−1)
θ (θ)dθ

]
sn = 0

δc sn = 1.

which can be solved efficiently using Monte Carlo integration.

Remark 4. The VBEM can rely on the standard operation
(3) to compute q(t)θ (θ). The update rules shown in (13)–(12)
converge to a local minimum of D(qθ(θ)qs(s)‖p(θ, s|ρ)). The
VBEM algorithm is a variational generalization of the EM
algorithm. The difference is that in the EM algorithm the
maximization step computes a point estimate rather than a
distribution over the parameter θ. If, at every step in the
VBEM method, qθ(θ) is restricted to a Dirac delta function,
the algorithm reduces to EM.

Remark 5. The VBEM algorithm will consider an anchor
more likely to be malfunctioning when q(t)sn (0) < q

(t)
sn (1). It is

readily verified that this happens when

E
{
(ρn − ‖an − θ‖)2

2σ2

}
> log

(
1− δ

δc
√
2πσ2

)
, (15)

in which the expectation is with respect to q
(t)
θ (θ). In other

words, when q
(t)
θ (θ) is such that, for good anchors, the

expected ranging error is above a certain threshold, the
anchor will (incorrectly) be considered to be malfunctioning.
In particular, a very broad q

(t)
θ (θ) will cause the VBEM

algorithm to consider all anchors to be malfunctioning.

IV. PERFORMANCE EVALUATION

We have carried out Monte Carlo simulations to evaluate
the performance of the three methods in terms of localization
accuracy and ability to identify outliers.

A. Performance Metrics

The three algorithms eventually localize the agent as fol-
lows: for the exact method, the estimated user location
θ̂ = argmaxθ p(θ|ρ), for the EM method θ̂ = θ̂

(t)
for a

sufficiently large value of t (see later), while for the VBEM
method, θ̂ = argmaxθ q

(t−1)
θ (θ) for a sufficiently large value

of t (see later). The localization accuracy is measured based on
the deviation of the estimated location θ̂ from the true location
θ. The final performance metric is the RMSE, defined as

RMSE =

√
E{‖θ̂ − θ‖2}, (16)

where the expectation is over the random simulation parame-
ters (anchor locations, agent locations, noise realizations).

The outlier identification capability is measured in terms
of the probability of incorrectly identifying an outlier. To this
end, the performance metric is the error probability, defined
as

Perr = δPmd + (1− δ)Pfa, (17)

in which Pmd and Pfa denote the missed detection and false
alarm probabilities, respectively, based on the MAP decisions
of s, i.e., ŝ = [ŝ1, . . . , ŝN ]T in which

ŝn = arg max
sn∈{0,1}

p(sn|ρ), (18)

for the exact method and

ŝn = arg max
sn∈{0,1}

q(t)sn (sn), (19)

for the EM and VBEM methods.
We note that (18) can be computed as follows:

p(sn|ρ)

∝

{
(1− δ)

∫ f(ρn,θ)p(θ|ρ)
(δc+(1−δ)f(ρn,θ))dθ sn = 0

δc
∫ p(θ|ρ)

(δc+(1−δ)f(ρn,θ))dθ sn = 1,
(20)

in which the integral can be evaluated through standard Monte
Carlo integration.
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Fig. 1. Localization RMSE as a function of the malfunctioning probability
δ.

B. Simulation setup

We consider a network with N = 30 anchors randomly dis-
tributed over a square region of side length L = 50 m. At every
simulation, the single agent position is drawn from a prior
Gaussian distribution with mean µp = [0 0]T , corresponding
to the center of the region, and standard deviation σp = L/6
m in both dimensions. The square region is discretized in
a grid of resolution 0.1 m, in order to carry out numerical
integration and thus enable a fair comparison of the three
methods. The performance is evaluated for δ ∈ [0, 1]. The
measurements from well-functioning anchors are generated
according to (2) with σn = 1, whereas the measurements from
malfunctioning anchors are generated from the distribution
p(ρn|sn = 1;θ) = c, where c is set equal to 1√

2L
. For

the EM method, we set θ̂0 = µp, while for the VBEM
method, for all n, q(0)sn (sn) = 0.5, sn ∈ {0, 1}. The number
of iterations in EM and VBEM are adaptive, based on the
differences1 between successive iterations. We observed that,
on average, the VBEM method requires a slightly higher
number of iterations compared to the EM approach.

C. Localization performance

The results in terms of RMSE for the three methods are
shown in Fig. 1. The plot also contains the curves for upper
and lower bounds. The upper bound on the RMSE corresponds
to the worst-case scenario in which all the anchors, even the
malfunctioning ones, are considered to be well-functioning
and, hence, are all given the same (unitary) weight when
computing qθ(θ). The lower bound, instead, corresponds to
the best-case scenario where all the malfunctioning nodes are
discarded and only the well-functioning ones are used, with the

1The algorithms are assumed to have converged when maxn |q(t)sn (0) −
q
(t−1)
sn (0)| ≤ ε and maxθ |q

(t)
θ (θ) − q

(t−1)
θ (θ)| ≤ ε, for VBEM, and

|θ̂t − θ̂t−1| ≤ ε for EM. In our simulations, we used ε = 10−3.

same (unitary) weight, when computing qθ(θ). For the EM and
VBEM methods, qsn(sn) determines the weight that the n-th
anchor’s measurement is given when computing respectively
(5) and (12). The higher (closer to 1) qsn(0) is, the more
strongly the n-th anchor is deemed to be well-functioning,
and therefore a higher weight is given to its measurement.

First of all, we notice a large gap between the bounds.
The lower bound is approximately constant at around 0.5
m until δ = 0.7, while the upper bound suffers from large
degradations, starting already at δ = 0.1. The exact method is
able to achieve the lower bound until δ = 0.5, after which it
quickly degrades to up to around 12 m RMSE. The VBEM and
EM methods achieve similar performance, much better than
the upper bound for low values of δ, reducing the degradation
that the malfunctioning anchors would cause if not accounted
for, but still leading to considerable errors (e.g., 5 m for
δ = 0.3). Note that (9) is satisfied when ρn − ‖an − θ̂t‖
is greater than 3.17 m (for δ = 0.1) down to 1.12 m (for
δ = 0.9). Hence, if the initial estimate is more than 3.17 m
away from the true value, the EM algorithm will consider the
corresponding anchor to be malfunctioning. This highlights
the role of having a good initial estimate. A similar reasoning
can be carried out for the VBEM algorithm where an initial
q
(0)
θ (θ) greatly affects the quality of the result. In all three

algorithms, the increasing trend of the error as a function of
δ is interrupted at δ = 0.9. When all the reference nodes are
malfunctioning (δ = 1), (4) (for the exact method), (5) (for
EM) and (12) (for VBEM) revert to the prior p(θ), so that in
all cases, θ̂ = µp. We note that these results are in contrast to
[8], which observed that EM had similar performance to the
exact method. This is because of difference in initial estimates.
In our case, both EM and VBEM are plagued with poor initial
estimates, thus leading many anchors that are considered to be
malfunctioning, and in turn to larger RMSE.

While the RMSE may indicate that EM and VBEM yield
poor performance, a more nuanced view is offered in Fig. 2.
We see that VBEM leads to low localization errors for δ < 0.3
at least 99% of the time. Similar observations hold for EM.
This implies that the RMSE results are dominated by a very
small fraction of large errors. To have a deeper understanding,
we now look to the error detection probability.

D. Outlier detection performance

Fig. 3 shows the error probability, averaged over all the N
anchors, for the three analyzed methods. It can be observed
that in all the three cases, the maximum value occurs for
δ = 0.7. The VBEM and EM methods show similar perfor-
mance, with the former slightly outperforming the latter for
δ > 0.5. For δ below 0.2, EM and VBEM have a detection
probability similar to the exact method, in contrast to their
respective RMSE performance. To understand this, we note
that the erroneous detection of an anchor state can be due
either to a false alarm or to a missed detection. Fig. 4 shows a
histogram of the false alarms and missed detections for each
network realization (i.e., how many of the N anchors were in-
correctly detected as malfunctioning and normal, respectively)
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Fig. 2. Probability of having localization error less than 1 m as a function
of the malfunctioning probability δ.

for δ = 0.4 for the VBEM method (similar observations hold
for EM). We observe that most of the error events with a
small number of errors (say, less than 5 errors) correspond
to missed detections (i.e., malfunctioning anchors that are
considered operating normally). Since they are few in number,
their impact on the positioning is limited. In contrast, the large
error events (10–20 errors) are almost exclusively false alarms
(so that we discard many good anchors, of which there are
on average only (1 − δ)N = 18). This means that when the
number of detected malfunctioning anchors far exceeds δN ,
the algorithm in fact knows that the initial estimates were
poor and can try to re-run VBEM or EM with better initial
estimates. Such a strategy was not explored in the current
paper.

V. CONCLUSIONS

In this paper, we have evaluated three Bayesian methods to
deal with the problem of user localization in wireless networks
in the presence of malfunctioning anchors: an exact method, an
EM method, and a VBEM method. Their performance in terms
of localization accuracy and ability to identify outliers have
been analyzed. In contrast to the literature, we observe that the
two approximate methods, which show similar performance
(with VBEM slightly outperforming EM), generally lead to
poor performance compared to the exact method. This poor
performance is mainly due to false alarms, which in turn are
due to poor initialization of the EM and VBEM methods.
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