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Abstract

We develop a general gauge invariant construction of the one-loop effective action for supersymmetric gauge field theories formulated
N =1/2 superspace. Using manifestly covariant techniques (the background superfield method and proper-time representations) adopted t
= 1/2 superspace we show how to define unambiguously the effective action of a matter multiplet (in fundamental and adjoint representatio
and the vector multiplet coupled to a backgroukd= 1/2 gauge superfield. As an application of this construction we exactly calculate the
low-energy one-loop effective action of matter multiplet &id(2) SYM theory on the Abelian background.
0 2005 Elsevier B.VOpen access under CC BY license.

1. Introduction the star produdi2]

X.0,0) % g(x,0,0) = [eRaC? Qg 2
Recently it was showifil] that the low-energy limit of su- A )* 8 =7 § @

perstring theory in the self-dual graviphoton background fieldHere Qu = i 50z + 36%3ea is the supersymmetry generator.
F% leads to a four-dimensional supersymmetric field theorySince the star- product contains explicitly the supersymmetry
formulated in the deformed/ = 1 superspace with fermionic generato, a half of supersymmetries is broken down. There-
coordinated satisfying the relation fore this superspace is callel’ = 1/2 superspace and the
corresponding field theories are call§td= 1/2 or nonanticom-
mutative (NAC) supersymmetric theories. We emphasize that
such a superspace deformation is possible only in the Euclid-
The anticommutation relations of the remainivg= 1 chiral ean space. o _ .
Renormalization of variougV" = 1/2 supersymmetric the-

superspace coordinate¥, ¢ are not modified. The field theo- . . . .
ries defined on such superspace can be formulated via ordina%;'es was d|s_cussed in Reft,5]. One-loop cglculatpns of
superfield actions where the superfields product is defined vi ounterterms In supergauge models were carried out in compo-
nent formalisn6] and in superspadé]. It has been foun{b],
that at one loop, in the standard class of gauges, the non-gauge-
mponding author. invariant divergent terms are generated. However, there exists a
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version of the original purd/ = 1/2 Lagrangian has been pro- the star-product is defined by

posed in6]. It has a form preserved under renormalization and B

the parameter of nonanticommutativity? is unrenormalized f(6) xg(0) = f(9)e 7~ F g(0)

(at least at one loop). The one loop divergences for NAG/) 1O s 081 92f 282g
gauge theories with the matter in the adjoint representation =f-8-CD WC 90 2302 92"
have been studied in Rd¥] using superfield background field 3
method. It was found that the divergent non-gauge -invariang star-product of exponential factors % x &V =
contributions are generated, however it was proved that sum %fgnww,nacaﬂwﬁ allows to write a star-product for two Weyl

all one-loop divergences is gauge invariant without any rede- . 2 18 ~
— . : . mbols in the formf x g = @y cob
finitions. We point out that practically all results i = 1/2 symbols in the formy « ¢ = [ d*x € f (0% +C*"mp)g(n), &

i ) ell as the star-products of symbols and delta-function in the
gauge theories concerned only structure of divergences, the ﬁv P y

nite part of effective action has not been investigated. orm

The gauge invariance of the above results means thatatthg « ...« £, x8(0 —0') x g1 x---x g
quantum level supergauge invariance is consistent with NAC 2 (0-0")
geometry and hence there exists a procedure to construct the :/d me J10 +Cr)* - % fu(0 +Cmr)
effective action in a form which preserves the manifestly gauge _ . _
invariance andV' = 1/2 supersymmetry. The aim of this Letter *81(6 —Cmyx % g (@ = C). @
is to formulate the procedure and study some of its applicaOne can note that the change of varialles- ¢ + Cx in the
tions. We consideN = 1/2 SYM theory coupled to a matter in chain of the left (right) star-products of symbols and delta-
fundamental and adjoint representations and use the superfidlgnctions does not affect on the exponent argument because of
background field method (see, e[§]) together with superfield the propertyrCr = 0, however it simplifies arguments gf,
heat kernel methof9]. For evaluation of one-loop effective ac- for example:
tion we also use the special techniques developed in[Ref. p
adapting it toV = 1/2 superspace. Jixox fa_1x fuxd(0 —607)

The Letter is organized as fpllows. In Sectibwe formulate _ :/dzn e £0) %% fr_1(0) * £, (6). (5)
the basic properties of nonanticommutative star-product and in-
troduce the operatorE* and T, which are very important for These are the basic properties of the star-products which allows
considering the NAC matter in the adjoint representation ando adopt the rules of operation with superfields in the conven-
pure NAC SYM theory. Sectio is devoted to formulation tional superspace theory for the NAC superspace.
of the models in superspace and superfield background field Using the star-product operatiai3) we define the star-
method. In Sectiod we describe a calculation of the one-loop operators’* andT;* by the rule

m

effective action for the matter in the fundamental representa- 5 5
tion coupled to an external SYM field and find the one-loopT* = _(*+*(—1>) =cos _caﬁ_ﬁ>,
effective action on a covariantly constant on-shell background. 90« 90

— —

Section5 is devoted to discussion of the heat kernel techniques.. _ }(* B *(_1)) _ Sinh(_icaﬂ i)
and the one-loop effective action for the NAC SYM theory. * ~ 2 N 00* 968 )’
The obtained results are formulated in the summary. We do

not discuss the details of calculations which are analogous tﬁ
ones in conventional superfield theories (see, 8g¢12] and
pay attention only on the aspects essentially associatedkwith
operation.

(6)

here+(~1 means(3) with replacementC — —C. There is

e Leibniz rule for7;; productsVa(fT*g) = (Vaf)T*g +
fT*V4g and the Jacobi identityf T*gT*h + hT* fT*g +
gT*hT* f =0 for integrand. It is easily to understand that any
chain of 7/ -products is the total derivative

fTrg= (Do, (fC*apg). )

Further we will see that the operatdf$ and7,* are very im-

portant for evaluation of effective action for fields in adjoint
The field theories on th&” = 1/2 superspace can be conve- representation.

niently formulated using a notion of symbols of the operators.

For any operator functioff depending on variables' satisfy- 3. SyM theory coupled to the chiral matter in A" = 1/2

ing the relationg1) one defines the corresponding Weyl symbol super space and the background field method

£(6) bythe rulef = [ d%z e f () wheref (z) is the Fourier

transform of the symbof (6): f () = —fd29 e ™ £(0) (see The N = 1/2 SYM theory in four-dimensional superspace
some details ii13]). The delta function of the anticommuting With explicitly broken supersymmetry in the antichiral sector
variablest is presented a&(6 — 0') = [ d27 e7@—9) The set can be defined on A" = 1 superspacf?] as straightforward

of operator functions forms a graded algebra. The in-product of

two operators/, ¢ is associated with the star-product of the Cor_Wesome analogous rules in noncommutative non-supersymmetric field

responding Weyl symbolg - § = fdzn e”é(f:(/g)(n), where  theoryin[14].

2. The properties of x-product
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generalization of the standard construction (see, B@]) by  leads to classical equations of motion in superfield form
introducing the NAC (but associative) star-prodyg). The

gauge transformations of (anti)chiral superfields in fundamenV® x Wy, = 0. (12)
tal representation are given in terms of two independent chiral

and antichiral parameter superfields 4 as follows The dynamics of chiral scalar matter in the (anti)fundamental

representation of the gauge group minimally coupled to the
o =t s, =@ re 4, gauge field is described by the action

Gauge fields and field strengths together with their superpart;
ners can be organized into superfields, which are expressed ‘Fn_
terms of a scalar superfield potentlalin the adjoint represen- . . =
tation of the gauge group. The gauge transformatioris lafok + / dzW.(@y, @7+ / dZW, (D, P 5), (13)
like

/dszéf*el’*d>f+/d8zd~>f*ejv*q_3f—

where®, & are chiral superfields ané, @ antichiral super-
fields. The kinetic action for the adjoint representation of the
Studying of component structure of supergauge theories is sinmatter fields is

plified with the help of Wess—Zumino (WZ) gauge. It was

shown[2] that the commutative gauge transformation does nos = | 48; Tr(e:" *® % el’ * q>). (14)
preserve the WZ gauge because of the propertiesprbduct

and one needs to perform an additiodatlependent gauge The component field redefinition analogous to the Seiberg—
transformation in order to recover the WZ gauge. Therefore, thgvitten map in noncommutative nonsupersymmetric theories,
supersymmetry transformations of the component fields receiveuch that these fields transform canonically under the gauge
a deformation stipulated by the parameter of nonanticommutaransformation was found if2].

V' _JA LAV oA
e =€ xe/ xe ',

tivity C*P. In order to formulate the superfield background field method
In the gauge chiral representation the constraints for the syg,9] for NAC SYM theories we have to perform the back-
perspace covariant derivatives are solved by ground-quantum splitting'e— €2 x ¢? (or & — € « &%)

®) wheres2, (£2), v are the background and quantum superpoten-
tials respectively. Then we have to write the covariant deriva-
and the corresponding superfield strengths are given by the deéives in gauge-(anti)chiral representation\gs= e,V x V, *
formed algebra of the covariant derivatives €', Vs = Dg (Vg = Dy, Vi = € x V4 x €77) with the standard
transformation rules in respect to two gauge transformations

Va=Da—iln=(e" Dy, Dy, —i{Ve,*V5})

1Vag =[Va, *Vd]’_ [V, *Vggl = €35 W, types (quantum and background). The covariantly (anti)chiral
[Va, Vg4l = €ap Wy, superfieldsV, (7% « @) = V4(e? « @) = 0 are splitted lin-
[Vai *Vg5] = —i (g3 fup + Eaﬂfd,g)- (9) early into background and a quantum parts. Background field

guantization consists in use of gauge fixing which explicitly
The superfields,, W, satisfy the Bianchi's identitie¥* «+  breaks the quantum gauge invariance while preserves manifest
W, + V% W, = 0. We pay attention that the superstrengihs  background gauge invariance. The procedure in NAC case is
andW; include the parameter of nonanticommutativif by  analogous to conventional oifi@,9] and means a replacement

definition. the point-products of superfields with the star-products.
Classic action fo = 1/2 SYM theory is written using su- In next sections we consider the effective action induced by
perfield strengthsV,, and W; as follows the quantum matter and gauge fields on a special background
1 o of U (1) vector multiplet superfield.
S=— dﬁztrW“WaJr—/d‘sZtrW“Wd. (10)
2g2 2g2

. ) ] 4. Thegaugeinvariant effective action induced by the
One can check that the acti¢iD) can be written inthe forf2]  matter in the fundamental representation

2 2_ 2 2
/d orw _/d orw |C:0 We consider the theory with actiofi3) where the super-
4 e =2 Looio2 fields @ are absent. For one-loop calculations we have to find a
+/d xtr("c Japr® = 5C (29) ) (11)  quadratic over quantum fields part of the classical action. After

) ] . background-quantum splitting defined earlier one can obtain
HereW |c—g is the superfield strength of the conventional SYM

theory 1 8 =T T ~ 456
Variation of the classic action So = E/d (P @) x Hox o)
. 2,62 g2
55 = thr/dsz[(ejv*D“ef), (7" % 5€))] * We A - (V *V2 v ) 15)
4 mvV2  V2xV2

i [ o o
Z_?/d Z(AV)ux (V% We), where the ‘masses’ are = Wp,,, (®), i =W} ().
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The one-loop correction to the effective action is formally In above expressions we used the Laplace-type operators acting

given by the expression

in the space of covariantly (anti)chiral superfields.@ = V24
V24®, 0.0 =V2xV2xP)

i
where¢’(0|H) = ¢’(e|H)|e—o and the zeta-function is defined O+ =0, —iW* xV, — E(V"‘ * We),

ir'V = _—InDetH, = —TrinH, = ¢'(0), (16)
as follows
o0
C(elH) =5~ / s Tr(el). (17)
0
Here Tr is the superspace functional trace ATe=

fdszA(z )88z =), and & = 145 H, + 3 S H,« H, +
. Further we follows the procedure proposedlif]. Evalu-

D_=D*—iW‘5‘*@d—l§(?d*Wd), (1)
wheren, = %V"“’" *x Vqs. Relations(16), (19), (20)define the
gauge invariant one-loop effective action for the theory under
consideration.

Further we will consider an approximation of a covariantly

constant on-shell background vector multiplet where the of ef-

ating the effective action on the base of proper-time techniquefgctive action can be carried up the very end and a result can
consists in two steps: calculation of the heat kernel, finding thée expressed in a closed form. Such a background is defined as

trace and then it renormalization.

First of all we obtain the useful representation of the
¢-function(17). Separating the diagonal and nondiagonal parts i * Wp =

of the operatoi, in (17) we rewrite the; -function as

¢(e|H /

0

2 2,92
XT,<ei<,,:;2 D o)

e,

F( ) = (2n)! ds"
x eiVZ*V 58(2 _ Z/)}

+ (V2 V?)

o e e
re’ 2 2n)! I e

X eiv V2,

! —

=z

V28—, _,
+/d62 (V2 & V2).

Here we used properyfz = d%;V? =

(18)

d%7v? and fulfilled in-

follows

0, V*«W,=0. (22)

The one-loop contribution to the effective action is found using
the methods formulated in Ref4.1,12]and taking into account
the property5) of the star-product. As a result one gets

1 m
@O _ 6 2In 2
= (471)2/51 W InA+c.c.
l o0
+W‘/\dS‘Seimﬁ”/d8Z Wz* WZ*;'*(SN,S.A—/’),
° (23)

where N = Do W# 4 N = Dy WP and functionz (x, y) has

been introduced ifiL2]

y2% (€S x —1) — x2 % (cos. y — 1)
x2 % y2 % (COS. X — COS. y) '
Thus, in the theory under consideration with the operators
O+ including only left star-products, the heat trace expansion
and hence the effective action is completely defined by ones in
conventional superfield theory, so the only difference is pres-
ence ofx-products in final results instead of ordinary products.

Culx,y) = (24)

5. Heat kerndl and the effective action in the NAC SYM

tegration by parts. Also we suggest that the ‘masses’ are slowlheory

varying. The ‘mass’ dependence {t8) is accompanied by
derivatives of the (anti)chiral kernels. It is convenient to sepa-

In this section we consider the one-loop contributions to the

rate these derivatives from ‘masses’. It can be done by repeatedfective action of the gauge fields and ghosts. We study a the-
integration by parts. Direct calculation with keeping in mind aory with SU(2) gauge group broken @ (1) and assume that the

limit ¢ — O leads to the following representationgfunction

1 i -1 —mms
C(GlH)=m/ds-se Lemis (K (s) + K_(s)).  (19)
0

with the chiral and antichiral heat kernel traces defined as
1 - ,
K+(S)= é/dﬁ Y\:\Jr VZSS(Z_Z)‘Z:ZM

1
K-(9)=5 / d%2e7 "« V2882 - )| _, (20)

background is described by on-shell Abelian superfi2R).

5.1. Features of the background-quantum splitting in the NAC
SYM theory

We describe a structure of the background-quantum splitting
in the NAC SYM model and point out a role of the operators
T, (6)for the fields in an adjoint representation.

4 ./\/’ﬂ./\/"s 58 D2W2 = B‘SNZ
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Using the background-quantum splittilg— e~?Ve' and
the standard gauge fixing functign= V2v leads to the follow-
ing quadratic part of\" = 1/2 SYM action withSU(2) gauge
group for the quantum superfield(see[8] for some details in
conventional superfield theory)

@ 1 8
Sgaug&gf:—@tr/d zvx HY xv (25)
where the operatal” has the form
HY =0, — i{W* «Ve | — i [W% V4 ). (26)

Similarly, the quadratic part of the ghost action has the form

@

S ghosts™

(27)
where all ghost superfields are background covariantly (anti)
chiral. The quantum superfield and the ghost superfields
¢’, b belong to Lie algebrau(2). It means thav = v“t, and
the same true for the ghost superfields. Here- 20“ are the
generators oBu(2) algebra satisfying the relations,, t,] =
2€peTe, t(TaTh) = Sab-
Structure of the operatddf”) (26) for the background be-
longing to the Abelian subgroufd (1) (in this caseW = W31r3)

tr / d8z (Fc— ¢+ bb),

can be simplified because of the property of the star—operatosr

T}. The operatorH*(“) (26) includes the termiv* x V. We
write V, = D, — iI, and consider the term iﬂf”) contain-
ing only D,

v{W,*Dv}

a_c_b

=797 a_b_c

(UaWC*DU )+ 11T (U“Dvb*WC)

U RO ey

+ }r“{rc,rh}v”{Wc,*Dvb}. (28)

2
As aresult one gets

tr(v{W“ * Dav})

=tr(r[z, b

+ tr(t“{t‘

v WET Dov”
tb})v“ WET* Dyv?, (29)

where we have used the definitioﬁ‘g(s) = %(* + b to
rewrite the[W,xDv] and {W, xDv}. The last term in(29) is
equal to zero because of #f{t¢, t?}) = 0, while in the first
term only componenWs survives. After redefinition of the
gauge field components andv? as followsy = %(vl—i-ivz),

5= %(vl — iv?) the first term can be rewritten in the form

V2 WiT;

while thev® component of the quantum superfieles v 7, do

Dof — 27 WST}! Doy, (30)
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given by

tr(v* {W*[[‘, *v]})

1
=tr< [ta, TeTa, T >v“[Wc,*[
1
+tr< {ta, T}

v
ool

+ tr(%[ra, rc]%[rd, rb]> va[Wc, *{Fd, *vb}].

1
—{ta, W} |V

2

1
{tav TC}Z[Tdv Tb]

(31)

It is easy to see that the first and the third terms are equal to

zero due to the trace propertieswmatrices. The second term

is proportional tovdWeT* I, Tv® and will not give a con-

tribution to the effective action, because of the prop€my

for star-operatof,. The last term together wit{80) can be

rewritten asy [—i W5 TV, ]x, where nowV, = Dy — i I, T

Appearance of* was stipulated by the adjoint representation.
As a result we found that the contributionsidtcomponent

of the quantum gauge multiplet totally decouple. Moreover, ac-

cording to the property of*-product, given in Sectio@, we

see that theirs contributions the one-loop effective action are ab-

ent. Nontrivial contribution to the effective action is generated

by the components! andv? or by their linear combinations

x and y. We want to emphasize that the action for thex

corresponds to non-Abelian superfield model where the star-

operatorT, plays the role of an internal symmetry generator

including whole star-structure of the initial theory. Further we

study a construction of the heat kernel and the effective action

of the theory under consideration generalizing the techniques

[10] for NAC superspace.

5.2. The heat kernels on the covariantly constant background

Above we have shown that the second variational deriva-

tive of the action in sector of the superfieldsy has the form
Sg(]?ugei-FG [ a8z x HX ¥ where the operatali} defined as

HY =0; — iWe Vi — iWE Vg, (32)

and the notation®; = WT} andV; for D — i I"'T were used.
We define the Green functiofi(z, ') of the operatort;* by

the equationt} G(z, /) = —8%(z — 2’). Then one introduces
the heat kernek, (z, z'|s) associated with this Green function
as G(z,7) = [y ds K(z,7/|s)e |, 10. It means that for-
mally K, (z,Z'|s) = e‘H;XSS(z —7'). The one-loop contribution

of the gauge superfields to the effective action is proportional
to Tr(K,) and gauge invariant due to the gauge transformation
law

not interact with the background and totally decouple. AboveK (z.7) — eiA(Z)K @ Zl9)e A

we have analyzed a contribution of the operafyr from op-
eratorV,, in (26). Now let us consider a contribution of an-
other terml",, which forms together wittD,, the supercovariant

derivativeV,, = D, — i I,. Its contribution to tév  H" x v) is

We rewrite the kernek,, in the form

Ky (z,2'1s) = @O WiVaami Wi (38 — 2)1(z,2)), (33)
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where bi-scalari(z,7’) satisfies the equatiora(z,z) x
VAI(z,z)) = 0 and boundary conditiod (z, z) = 1. Further
we will use the techniques developed 9] adopting it to the
NAC superspace.

In order to calculat€33) we, first of all, write the operator

HY (32) as follows H = 0; + V whereV = —iWZV;, —

i W V34 and decompose the operatéfe as

SOAY) _ o @t S IVID: VI [05.10: VIl (05, VgV osDs
(34)

It follows from (9) that for V;,, W;g = O the first commutator

becomes
[0z, V1= (i Wo T} W + iWe T} Wy ) T VEY =0, (35)

because of the property, (x + » H Wy = —Wz (1 + %)W,

O.D. Azorkina et al. / Physics Letters B 633 (2006) 389-396

£ (s5) = %% 4 / dt W& (1)¢%(n),
0

(39)

whereW(s); = Wf (e""wi)%.
Next step is calculation af/;/ (z, ) in (36). To do that we
write a differential equation

l ’ * ’
S[J N l 7,2

= Uz (s)(Wz Vi + Wz V) U; 1)Uz ()1 (2, 7)) (40)

and solve it. Thus, we should construct the operatrs(s)

and act on/ (z, 7). We pay attention that the procedure of cal-
culations, we discuss here, preserves manifest gauge invariance.
Therefore, to simplify the calculations, we can impose any ap-
propriate gauge on background superfield. The treatment with

which is valid for the chosen Abelian background. This iden—[(Z 7/) are very much simplified under conditiong, z') = 1

tity leads to convenient factorization of the kernel in the form

(se€e[10] for details in conventional superfield theory)

Ky(z,715) = Us()K (¢ 15)¢%2%1 (2, 2),
Us(s) = e—is(WgV;a-‘ngV;d). (36)

Here.we have used the chiral basis with coordina(t;é@,
6*,6%) for calculations and the presentatiofi(z — z/) =

§4(¢*) 222, The translation invariant interval components Vx

¢“(z,7') in the chiral basis are defined by
§A — (é.ao'z’ ;a’ Eo’z)
— ((y _ y/)ozd —i— 9/)0;9‘/&’ o — 9/)05’ (9‘ _ 9‘)&)_

The Schwinger type heat kerngl(¢|s) in (36) can be cal-
culated by the various methods and it is well known

K( — ' ex —}trln~73in;SF/2
)= G2 &P ~3 " s

% e—%é(% cot; %){7 (37)
where FPP = 0 rF 1+ sl 7 and ff, 7/ are the spinor com-
ponents of the Abelian strengtt’s,,.> The contraction over
indices in the right exponent goes only f@g®* compo-
nents. The functiong;(x) are given as an expansigii(x) =

Yo o L TH T TAx).

Next step of calculations is obtaining the action of the oper-

which is equivalent to the Fock—Schwinger gaydex 134 =0
or Viul(z,7)) = —il(z,7)) Iz 4 (see details ifl0] for conven-
tional superspace theories).

Ifin the chiral basis we have a supercovariant derivauye
in the pointz’, then the supercovariant derivativg satisfying
the Fock—Schwinger gauge in poinhas the form

| = T QnHi0 Qi O gty Vi 6V, otV 0 D
—y/BBY s —0'% Dy BBy, 546" Dy 59 Dy
x e " O (Vi e " % ¢
x e_éﬂ%? 6V Vigs =0 Vi g i0' 0 =iy Qn=i6'Q (41)
The relation(41) leads to explicit expressions for the connec-
tions in the Fock—Schwinger gauge:
Vig—Dy=—il3;=0,
Vig— Dg=—il3g
Ll 1 (&AW )_} iz
= 2§/3L 4 2§ﬁ 4 %6 2§L ¢ BB
)
+i¢ (W;’ﬂ +§“(v;W;’ﬁ)),
Vigp — 0pp = —i13pp
_ i ad 1/ = ow/ 1 7/
=750 Fraaps T8 Wap + 55 Wiy

+ 830 (Vi Wig). (42)

ator U; (s) in (36). This operator contains covariant derivatives First of these relations is the consequence of the supercovariant

which act on the interval componertig (s)¢4 = ¢4 (s)Uz(s).

Hence we should consider the adjoint actiortiobn ¢A. Intro-

ducing the notatiovk/;/fx = Viq Wf, /\_/;’i = Vg Wf we have for
adjoint actionU on the interval components

e—iSN; -1 o
W)=+ W —r) .
% (s)=¢ f e .
. . . e—is/\T;_]_ o
o (1) -
) N; 5
5 Also we point out the useful equatioy,, K + (L)ﬁég ;%K =0
ad F_1laapp =0,

which allows us to get any order derivatives of the Schwinger type kernel.

derivative forms in the chiral bas{8). Using(42) one can find
the solution of Eq(40)in the form

Us(s)1(z,2)

N

—exp (i [ ae (Ewipo)efP oW
- 04 2 *B ¢ ;ﬂ'
0

+iwl it oW,
2 * *B

1 . —4
+ WP (0)¢* (1)ZP (v) F!

.22 B /
> ppac i (r)w; (r)W;/3

- iEZ(mWf(r);”'(r)f;’aﬁ)). (43)
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Substituting the 4 (s) (38)andU; 1 (z, 7') (43)into (36)and  wherey is the normalization point and Tr is an inherent func-

taking into accoun37) one gets finally the kernel tional trace.

, ~ 2, =2 , General structure oK, +(z,z|s) was discussed in Sec-
Ky (z,21s) = K(Z1s)¢ ()¢ ") Uz () (z, 2) (44 tion5.2(see(44), (48), (49). One can show that &, (s) does
determining the effective action. not contain the holomorphic contributions and, hence, the one-

Now we discuss a structure of kernels corresponding to thébop divergent contributions to the complete effective action
ghost or to any adjoint chiral matter contribution to the effective(50) is determined exclusively by the ghosts as in the conven-
action. First of all we point out that the following relations take tional casg8].

place in on-shell Abelian background To construct the divergent part of the effective action we
) . )

2 s HY _ 52V 92v2o2 Dis 2, should consider the behavior &1 (z,7'|s)|;=, at smalls.

Vielh = Vieti i =@ Vi =@ Vg (45  as usual, the kernel expansion looks IikEL(z,z|s) ~

vfefH;X = vfefﬁ;zv;z = eYV;ZV;Zv;Z — 'O V;Z. (46) S%(ao(z,_z) + sal(z_, 7) + szaz(z,_z) + --). The coefficient
az(z, z) is responsible for the divergences. Exact form of the
kernel K1(z, Z'|s) is given by(48), (49) The only thing we
K4 (z,71s) = V2K, (z,7'|s) = Vi?K (2, Z|9), sk?oulrc]i do is%to study its behavior at smaJIOhne car;fshow
that the coefficientag(z, z) = 0, a1(z, z) = 0. The coefficient
K_(z.2ls) = ViKy (z.2'ls) = Vi?K (2. 2'ls). (47) a>(z, z) includes the products of some number g, some
The functionsG+(z, 7') defined asG+(z,7) = fooo ds K+(z, number of superintervats® and some number of star-operators
7 |s)e .10 satisfy the equationsd;4:G+(z,7) = T acting on the intervals and superstrengths. Using the explicit
—8+(z,7') whereO; 1 are the (anti)chiral d’Alambertians de- form (6) of the operatof* one can show that the final expres-
pending on background superfield in NAC superspace. It mearson for ax(z, z) is a sum of one for conventional superfield
that the functiong47) are the kernels associated with the op-theory plus a total derivative with respect to the variaffte
eratorsO;. Namely these kernels determine the one-loopwhich is stipulated by action of the opera@t on the superin-
contribution to the effective action from any chiral matter in tervalz4. As a result one obtains
the adjoint representation. Since the kerr(dlg) are from the

Let us introduce the chiral and antichiral heat kernels

kernel K, we can substituté44) into (47) and find these ker- /dGZ az(z, z|s) ~ /dGZ W W,. (52)
nels
B 5 It leads to the divergent part of the effective action in the form
Ki(z,71s) = Vi2Ky = =K (¢19)¢3()Us ()1 (2, 2. (48) o 3 1 3 12
K_(z,7|s) = V2K, Tav ==3 " Gny /d e WEWeln —5. (53)
= —R@I9)2s)e, 28 i)W () We see that the one-loop divergences on the Abelian back-
ground are analogous to classical action what provides renor-
x Uz ()1 (z,2). (49 malizability.

These relations determine a contribution of the chiral adjoint The finite parts of the effective action is analyzed by known
matter including ghost superfields into the one-loop effectivenethods (see, e.d12]).% As a result one obtains
action.

In next subsection we consider heat traces associated Wlt (1) / a8z / ds se—m W~ ~zcosf(s/\/ ) —
the heat kernel@&4), (48), (49)and, particularly, coefficient, X T gg2 * o (sN;)?
in the Schwinger—De Witt expansion of the low-energy effec- _
tive action. , CostisA;) — s2(NZ = N?)

(sN3)2 cosr(s/\/;) — coshis\;)

The finite part of the chiral contributions in the effective action
can be written in terms of the functiag (24)

(54)

5.3. Gauge fields and ghosts contribution to the effective
action SU2) SYM theory

The one-loop contribution™™® to the effective action for @ 1 s TP, B
NAC SYM theory is defined with the help of thefunctions  [yhosts= W/dsz/ds e " WEWELi(sN;, sN;).  (55)
¢y.+(€) corresponding to the operatakg’, 0z, respectively

Jalti 1"(1) + Fg(rl\ésts (50) He'rAesmaifeirlljlitnftrr?ée;inree?éjcl)ator mass. .

, -loop effective action on the covariantly
Here 1"( ) is pure SYM contribution a”T(hosts's ghost con-  constant Abelian background is exactly calculated on the base
trlbutlon Each of these contributions is calculated via functionof manifestly gauge invariant techniques in the NAC super-
¢’(0). Inits turn, thez -functions are given by integral represen- space. We emphasize a role of the star-operaforfor the

tations theories with fields in the adjoint representation.
s s _
Cx,i(e) =7~ | 1= Tr Kx,i — ) (51) 6 we pay attention here only on aspects associated witructure of the
I'(e) $ M theory.
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