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Abstract

We develop a general gauge invariant construction of the one-loop effective action for supersymmetric gauge field theories form
N = 1/2 superspace. Using manifestly covariant techniques (the background superfield method and proper-time representations) ad
N = 1/2 superspace we show how to define unambiguously the effective action of a matter multiplet (in fundamental and adjoint repres
and the vector multiplet coupled to a backgroundN = 1/2 gauge superfield. As an application of this construction we exactly calculat
low-energy one-loop effective action of matter multiplet andSU(2) SYM theory on the Abelian background.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Recently it was shown[1] that the low-energy limit of su
perstring theory in the self-dual graviphoton background fi
Fαβ leads to a four-dimensional supersymmetric field the
formulated in the deformedN = 1 superspace with fermioni
coordinated satisfying the relation

(1)
{
θ̂ α, θ̂β

} = 2α′2Fαβ = 2Cαβ.

The anticommutation relations of the remainingN = 1 chiral
superspace coordinatesym, θ̄ α̇ are not modified. The field theo
ries defined on such superspace can be formulated via ord
superfield actions where the superfields product is defined
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the star product[2]

(2)f (x, θ, θ̄) � g(x, θ, θ̄) = f e
←−−
QαCαβ−−→

Qβ g.

Here Qα = i ∂
∂θα + 1

2 θ̄ α̇∂αα̇ is the supersymmetry generato
Since the star-product contains explicitly the supersymm
generatorQα a half of supersymmetries is broken down. The
fore this superspace is calledN = 1/2 superspace and th
corresponding field theories are calledN = 1/2 or nonanticom-
mutative (NAC) supersymmetric theories. We emphasize
such a superspace deformation is possible only in the Eu
ean space.2

Renormalization of variousN = 1/2 supersymmetric the
ories was discussed in Refs.[4,5]. One-loop calculations o
counterterms in supergauge models were carried out in com
nent formalism[6] and in superspace[7]. It has been found[6],
that at one loop, in the standard class of gauges, the non-g
invariant divergent terms are generated. However, there ex
nonlinear redefinition of the gaugino fields which remove s
terms and restores the gauge invariance. Moreover a mod

2 In the case of extended supersymmetric theories, the various super
deformations can be constructed in the sector of fermionic coordinates[3].
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version of the original pureN = 1/2 Lagrangian has been pr
posed in[6]. It has a form preserved under renormalization
the parameter of nonanticommutativityCαβ is unrenormalized
(at least at one loop). The one loop divergences for NACU(N)

gauge theories with the matter in the adjoint representa
have been studied in Ref.[7] using superfield background fie
method. It was found that the divergent non-gauge -invar
contributions are generated, however it was proved that su
all one-loop divergences is gauge invariant without any re
finitions. We point out that practically all results inN = 1/2
gauge theories concerned only structure of divergences, th
nite part of effective action has not been investigated.

The gauge invariance of the above results means that a
quantum level supergauge invariance is consistent with N
geometry and hence there exists a procedure to construc
effective action in a form which preserves the manifestly ga
invariance andN = 1/2 supersymmetry. The aim of this Lett
is to formulate the procedure and study some of its app
tions. We considerN = 1/2 SYM theory coupled to a matter i
fundamental and adjoint representations and use the supe
background field method (see, e.g.,[8]) together with superfield
heat kernel method[9]. For evaluation of one-loop effective a
tion we also use the special techniques developed in Ref.[10]
adapting it toN = 1/2 superspace.

The Letter is organized as follows. In Section2 we formulate
the basic properties of nonanticommutative star-product an
troduce the operatorsT ∗

c andT ∗
s which are very important fo

considering the NAC matter in the adjoint representation
pure NAC SYM theory. Section3 is devoted to formulation
of the models in superspace and superfield background
method. In Section4 we describe a calculation of the one-lo
effective action for the matter in the fundamental represe
tion coupled to an external SYM field and find the one-lo
effective action on a covariantly constant on-shell backgrou
Section5 is devoted to discussion of the heat kernel techniq
and the one-loop effective action for the NAC SYM theo
The obtained results are formulated in the summary. We
not discuss the details of calculations which are analogou
ones in conventional superfield theories (see, e.g.,[8–12]) and
pay attention only on the aspects essentially associated w�-
operation.

2. The properties of �-product

The field theories on theN = 1/2 superspace can be conv
niently formulated using a notion of symbols of the operat
For any operator function̂f depending on variableŝθα satisfy-
ing the relations(1) one defines the corresponding Weyl sym

f (θ) by the rulef̂ = ∫
d2π eπθ̂ f̃ (π) wheref̃ (π) is the Fourier

transform of the symbolf (θ): f̃ (π) = − ∫
d2θ e−πθf (θ) (see

some details in[13]). The delta function of the anticommutin
variablesθ is presented asδ(θ − θ ′) = ∫

d2π eπ(θ−θ ′). The set
of operator functions forms a graded algebra. The in-produ
two operatorsf̂ , ĝ is associated with the star-product of the c

responding Weyl symbolŝf · ĝ = ∫
d2π eπθ̂ (f̃ � g)(π), where
n

t
of
-

fi-

he

he
e

-

ld

-

d
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.
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o
to

.

f

the star-product is defined by

f (θ) � g(θ) = f (θ)e
−←−−

∂
∂θα Cαβ

−−→
∂

∂θβ g(θ)

(3)

= f · g − (−1)|f | ∂f

∂θα
Cαβ ∂g

∂θβ
− 1

2

∂2f

∂θ2
C2∂2g

∂θ2
.

A star-product of exponential factors eθπ � eθψ =
eθπ+θψ−παCαβψβ allows to write a star-product for two Wey
symbols in the formf � g = ∫

d2π eπθf (θα + Cαβπβ)g̃(π), as
well as the star-products of symbols and delta-function in
form

f1 � · · · � fn � δ(θ − θ ′) � g1 � · · · � gm

=
∫

d2π e(θ−θ ′)πf1(θ + Cπ) � · · · � fn(θ + Cπ)

(4)� g1(θ − Cπ) � · · · � gm(θ − Cπ).

One can note that the change of variablesθ → θ ± Cπ in the
chain of the left (right) star-products of symbols and de
functions does not affect on the exponent argument becau
the propertyπCπ = 0, however it simplifies arguments offi ,
for example:

f1 � · · · � fn−1 � fn � δ(θ − θ ′)

(5)=
∫

d2π e(θ−θ ′)πf1(θ) � · · · � fn−1(θ) � fn(θ).

These are the basic properties of the star-products which a
to adopt the rules of operation with superfields in the conv
tional superspace theory for the NAC superspace.3

Using the star-product operation(3) we define the star
operatorsT �

c andT �
s by the rule

T �
c = 1

2

(
� + �(−1)

) = cosh

(←−−−
∂

∂θα
Cαβ

−−−→
∂

∂θβ

)
,

(6)T �
s = 1

2

(
� − �(−1)

) = sinh

(
−

←−−−
∂

∂θα
Cαβ

−−−→
∂

∂θβ

)
,

where �(−1) means(3) with replacementC → −C. There is
the Leibniz rule forT �

c,s products∇A(f T �g) = (∇Af )T �g +
f T �∇Ag and the Jacobi identityf T �gT �h + hT �f T �g +
gT �hT �f = 0 for integrand. It is easily to understand that a
chain ofT �

s -products is the total derivative

(7)f T �
s g = (−1)|f |∂α

(
f Cαβ∂βg

)
.

Further we will see that the operatorsT ∗
c andT ∗

s are very im-
portant for evaluation of effective action for fields in adjo
representation.

3. SYM theory coupled to the chiral matter in N = 1/2
superspace and the background field method

TheN = 1/2 SYM theory in four-dimensional superspa
with explicitly broken supersymmetry in the antichiral sec
can be defined on aN = 1 superspace[2] as straightforward

3 See some analogous rules in noncommutative non-supersymmetric
theory in[14].
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generalization of the standard construction (see, e.g.,[8,9]) by
introducing the NAC (but associative) star-product(2). The
gauge transformations of (anti)chiral superfields in fundam
tal representation are given in terms of two independent c
and antichiral parameter superfieldsΛ,Λ̄ as follows

Φ ′ = eiΛ
� � Φ, Φ̄ ′ = Φ̄ � e−iΛ̄

� .

Gauge fields and field strengths together with their superp
ners can be organized into superfields, which are express
terms of a scalar superfield potentialV in the adjoint represen
tation of the gauge group. The gauge transformations ofV look
like

eV ′
� = eiΛ̄

� � eV
� � e−iΛ

� .

Studying of component structure of supergauge theories is
plified with the help of Wess–Zumino (WZ) gauge. It w
shown[2] that the commutative gauge transformation does
preserve the WZ gauge because of the properties of�-product
and one needs to perform an additionalC-dependent gaug
transformation in order to recover the WZ gauge. Therefore
supersymmetry transformations of the component fields rec
a deformation stipulated by the parameter of nonanticomm
tivity Cαβ .

In the gauge chiral representation the constraints for the
perspace covariant derivatives are solved by

(8)∇A = DA − iΓA = (
e−V
� � DαeV

� , D̄α̇,−i{∇α, �∇̄α̇})
and the corresponding superfield strengths are given by th
formed algebra of the covariant derivatives

i∇αα̇ = [∇α, �∇̄α̇], [∇̄α̇, �∇ββ̇ ] = εα̇β̇Wβ,

[∇α, �∇ββ̇ ] = εαβW̄β̇ ,

(9)[∇αα̇, �∇ββ̇ ] = −i(εα̇β̇fαβ + εαβf̄α̇β̇ ).

The superfieldsWα, W̄α̇ satisfy the Bianchi’s identities∇α �

Wα +∇̄ α̇ �W̄α̇ = 0. We pay attention that the superstrengthsWα

andW̄α̇ include the parameter of nonanticommutativityCαβ by
definition.

Classic action forN = 1/2 SYM theory is written using su
perfield strengthsWα andW̄α̇ as follows

(10)S = 1

2g2

∫
d6z trWαWα + 1

2g2

∫
d6z̄ tr W̄ α̇W̄α̇.

One can check that the action(10)can be written in the form[2]∫
d2θ trW2 =

∫
d2θ trW2

∣∣
C=0

(11)+
∫

d4x tr

(
−iCαβfαβλ̄2 − 1

2
C2(λ̄2)2

)
.

HereW |C=0 is the superfield strength of the conventional SY
theory.

Variation of the classic action

δS = i

g2
tr

∫
d8z

[(
e−V
� � DαeV

�

)
,
(
e−V
� � δeV

�

)]
� Wα

= − i

2

∫
d8z (�V )� �

(∇α � Wα

)
,

g

-
l

t-
in

-

t

e
e
-

-

e-

leads to classical equations of motion in superfield form

(12)∇α � Wα = 0.

The dynamics of chiral scalar matter in the (anti)fundame
representation of the gauge group minimally coupled to
gauge field is described by the action

S =
∫

d8z Φ̄f � eV
� � Φf +

∫
d8z Φ̃f̄ � e−V

� �
¯̃
Φf̄

(13)+
∫

d6zW�(Φf , Φ̃f̄ ) +
∫

d6z̄W̄�(Φ̄f ,
¯̃
Φf̄ ),

whereΦ,Φ̃ are chiral superfields and̄Φ,
¯̃
Φ antichiral super-

fields. The kinetic action for the adjoint representation of
matter fields is

(14)S =
∫

d8zTr
(
e−V
� � Φ̄ � eV

� � Φ
)
.

The component field redefinition analogous to the Seibe
Witten map in noncommutative nonsupersymmetric theor
such that these fields transform canonically under the ga
transformation was found in[2].

In order to formulate the superfield background field met
[8,9] for NAC SYM theories we have to perform the bac
ground-quantum splitting eV� → eΩ

� � ev
� (or eV

� → ev
� � eΩ̄

� )
whereΩ,(Ω̄), v are the background and quantum superpo
tials respectively. Then we have to write the covariant der
tives in gauge-(anti)chiral representation as∇α = e−v

� � ∇α �

ev
�, ∇̄α̇ = D̄α̇ (∇α = Dα, ∇̄α̇ = ev

� � ∇̄α̇ � e−v
� ) with the standard

transformation rules in respect to two gauge transformat
types (quantum and background). The covariantly (anti)ch
superfields∇α(e−Ω

� � Φ̄) = ∇̄α̇(eΩ̄
� � Φ) = 0 are splitted lin-

early into background and a quantum parts. Background
quantization consists in use of gauge fixing which explic
breaks the quantum gauge invariance while preserves ma
background gauge invariance. The procedure in NAC cas
analogous to conventional one[8,9] and means a replaceme
the point-products of superfields with the star-products.

In next sections we consider the effective action induced
the quantum matter and gauge fields on a special backgr
of U(1) vector multiplet superfield.

4. The gauge invariant effective action induced by the
matter in the fundamental representation

We consider the theory with action(13) where the super
fieldsΦ̃ are absent. For one-loop calculations we have to fin
quadratic over quantum fields part of the classical action. A
background-quantum splitting defined earlier one can obta

S(2) = 1

2

∫
d8z

(
Φ̄T

c ,ΦT
c

)
� Ĥ� �

(
Φc

Φ̄c

)
,

(15)Ĥ� =
(∇2 � ∇̄2 m̄∇2

m∇̄2 ∇̄2 � ∇2

)
,

where the ‘masses’ arem = W ′′
ΦΦ(Φ), m̄ = W̄ ′′ (Φ̄).
Φ̄Φ̄
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The one-loop correction to the effective action is forma
given by the expression

(16)iΓ (1) = − lnDetĤ� = −Tr ln Ĥ� = ζ ′(0),

whereζ ′(0|H) = ζ ′(ε|H)|ε=0 and the zeta-function is define
as follows

(17)ζ(ε|H) = 1

Γ (ε)

∞∫
0

ds sε−1 Tr
(
esĤ�
�

)
.

Here Tr is the superspace functional trace TrA =∫
d8zA(z, z′)δ8(z−z′)|z′=z and esĤ�

� = 1+ sĤ� + s2

2 Ĥ� � Ĥ� +
· · · . Further we follows the procedure proposed in[11]. Evalu-
ating the effective action on the base of proper-time techniq
consists in two steps: calculation of the heat kernel, finding
trace and then it renormalization.

First of all we obtain the useful representation of
ζ -function(17). Separating the diagonal and nondiagonal p
of the operatorĤ� in (17)we rewrite theζ -function as

ζ(ε|H) = 1

Γ (ε)

∞∫
0

ds · sε−1

× Tr

(
e
s
( 0 m̄∇2

m∇̄2 0

)
� e

s
(∇2 � ∇̄2 0

0 ∇̄2 � ∇2

)
�

)

=
∫

d8z

∞∫
0

ds

Γ (ε)
sε−1

∞∑
n=0

s2n

(2n)! (mm̄)n
dn

dsn

× es∇2�∇̄2

� δ8(z − z′)
∣∣
z′=z

+ (∇2 ↔ ∇̄2)
=

∫
d6z

∞∫
0

ds

Γ (ε)
sε−1

∞∑
n=0

s2n

(2n)! (mm̄)n
dn

dsn

× es∇̄2�∇2

� � ∇̄2δ8(z − z′)
∣∣
z′=z

(18)+
∫

d6z̄
(∇2 ↔ ∇̄2).

Here we used propertyd8z = d6z∇̄2 = d6z̄∇2 and fulfilled in-
tegration by parts. Also we suggest that the ‘masses’ are sl
varying. The ‘mass’ dependence in(18) is accompanied by
derivatives of the (anti)chiral kernels. It is convenient to se
rate these derivatives from ‘masses’. It can be done by repe
integration by parts. Direct calculation with keeping in mind
limit ε → 0 leads to the following representation ofζ -function

(19)ζ(ε|H) = 1

Γ (ε)

∞∫
0

ds · sε−1e−mm̄s
(
K+(s) + K−(s)

)
,

with the chiral and antichiral heat kernel traces defined as

K+(s) = 1

2

∫
d6zes�+

� � ∇̄2δ8(z − z′)
∣∣
z=z′ ,

(20)K−(s) = 1

2

∫
d6z̄es�−

� � ∇2δ8(z − z′)
∣∣
z=z′ .
s
e

s

ly

-
ed

In above expressions we used the Laplace-type operators a
in the space of covariantly (anti)chiral superfields (�+Φ = ∇̄2�

∇2 � Φ, �−Φ̄ = ∇2 � ∇̄2 � Φ̄)

�+ = �� − iWα � ∇α − i

2

(∇α � Wα

)
,

(21)�− = �� − iW̄ α̇ � ∇̄α̇ − i

2

(∇̄ α̇ � W̄α̇

)
,

where�� = 1
2∇αα̇ � ∇αα̇ . Relations(16), (19), (20)define the

gauge invariant one-loop effective action for the theory un
consideration.

Further we will consider an approximation of a covarian
constant on-shell background vector multiplet where the o
fective action can be carried up the very end and a result
be expressed in a closed form. Such a background is defin
follows

(22)∇αα̇ � Wβ = 0, ∇α � Wα = 0.

The one-loop contribution to the effective action is found us
the methods formulated in Refs.[11,12]and taking into accoun
the property(5) of the star-product. As a result one gets

Γ (1) = − 1

(4π)2

∫
d6zW2 ln

m

Λ
+ c.c.

(23)

+ 1

(4π)2

∞∫
0

ds · se−mm̄s

∫
d8zW2 � W̄2 � ζ�(sN , sN̄ ),

whereN β
α = DαWβ ,4 N̄ β̇

α̇ = D̄α̇W̄ β̇ and functionζ(x, y) has
been introduced in[12]

(24)ζ�(x, y) = y2 � (cos� x − 1) − x2 � (cos� y − 1)

x2 � y2 � (cos� x − cos� y)
.

Thus, in the theory under consideration with the opera�± including only left star-products, the heat trace expans
and hence the effective action is completely defined by one
conventional superfield theory, so the only difference is p
ence of�-products in final results instead of ordinary produc

5. Heat kernel and the effective action in the NAC SYM
theory

In this section we consider the one-loop contributions to
effective action of the gauge fields and ghosts. We study a
ory with SU(2) gauge group broken toU(1) and assume that th
background is described by on-shell Abelian superfield(22).

5.1. Features of the background-quantum splitting in the N
SYM theory

We describe a structure of the background-quantum spli
in the NAC SYM model and point out a role of the operat
T �

c,s (6) for the fields in an adjoint representation.

4 N β
α N δ

β = δδ
αD2W2 = δδ

αN 2.
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Using the background-quantum splitting∇ → e−v∇ev and
the standard gauge fixing functionχ = ∇2v leads to the follow-
ing quadratic part ofN = 1/2 SYM action withSU(2) gauge
group for the quantum superfieldv (see[8] for some details in
conventional superfield theory)

(25)S
(2)
gauge+gf = − 1

2g2
tr

∫
d8z v � H(v)

� � v

where the operatorHv
� has the form

(26)H(v)
� = �� − i

{
Wα,�∇α

} − i
{
W̄ α̇, �∇̄α̇

}
.

Similarly, the quadratic part of the ghost action has the form

(27)S
(2)
ghosts= tr

∫
d8z (c̄′c − c′c̄ + b̄b),

where all ghost superfields are background covariantly (a
chiral. The quantum superfieldv and the ghost superfieldsc,
c′, b belong to Lie algebrasu(2). It means thatv = vaτa and
the same true for the ghost superfields. Hereτa = 1√

2
σa are the

generators ofsu(2) algebra satisfying the relations[τa, τb] =
i
√

2εabcτc, tr(τaτb) = δab.
Structure of the operatorH(v)

� (26) for the background be
longing to the Abelian subgroupU(1) (in this caseW = W3τ3)
can be simplified because of the property of the star-ope
T ∗

c . The operatorH(v)
� (26) includes the termWα � ∇α . We

write ∇α = Dα − iΓα and consider the term inH(v)
� contain-

ing onlyDα

v{W,�Dv}
= τaτ cτ b

(
vaWc � Dvb

) + τaτbτ c
(
vaDvb � Wc

)
= 1

2
τa

[
τ c, τ b

]
va

[
Wc,�Dvb

]
(28)+ 1

2
τa

{
τ c, τ b

}
va

{
Wc,�Dvb

}
.

As a result one gets

tr
(
v
{
Wα � Dαv

})
= tr

(
τa

[
τ c, τ b

])
vaWα

c T �
c Dαvb

(29)+ tr
(
τa

{
τ c, τ b

})
vaWα

c T �
s Dαvb,

where we have used the definitionsT �
c(s) = 1

2(� ± �−1) to
rewrite the[W,�Dv] and {W,�Dv}. The last term in(29) is
equal to zero because of tr(τ a{τ c, τ b}) = 0, while in the first
term only componentW3 survives. After redefinition of the
gauge field componentsv1 andv2 as followsχ = 1√

2
(v1+ iv2),

χ̃ = 1√
2
(v1 − iv2) the first term can be rewritten in the form

(30)
√

2χWα
3 T �

c Dαχ̃ − √
2χ̃Wα

3 T �
c Dαχ,

while thev3 component of the quantum superfieldv = vaτa do
not interact with the background and totally decouple. Ab
we have analyzed a contribution of the operatorDα from op-
erator∇α in (26). Now let us consider a contribution of a
other termΓα which forms together withDα the supercovarian
derivative∇α = Dα − iΓα . Its contribution to tr(v �H

(v)
� � v) is
-

r

given by

tr
(
v �

{
W � [Γ,�v]})

= tr

(
1

4
[τa, τc]{τd, τb}

)
va

[
Wc,�

[
Γ d, �vb

]]
+ tr

(
1

2
{τa, τc}1

2
{τd, τb}

)
va

{
Wc,�

[
Γ d, �vb

]}
+ tr

(
1

2
{τa, τc}1

2
[τd, τb]

)
va

{
Wc,�

{
Γ d, �vb

}}
(31)+ tr

(
1

2
[τa, τc]1

2
[τd, τb]

)
va

[
Wc,�

{
Γ d, �vb

}]
.

It is easy to see that the first and the third terms are equ
zero due to the trace properties ofτ -matrices. The second ter
is proportional tov3WαT �

s ΓαT �
s v3 and will not give a con-

tribution to the effective action, because of the property(7)
for star-operatorT �

s . The last term together with(30) can be
rewritten asχ[−iWα

3 T �
c ∇α]χ̃ , where now∇α = Dα − iΓαT �

c .
Appearance ofT �

c was stipulated by the adjoint representatio
As a result we found that the contributions ofv3-component

of the quantum gauge multiplet totally decouple. Moreover,
cording to the property ofT �

s -product, given in Section2, we
see that theirs contributions the one-loop effective action are
sent. Nontrivial contribution to the effective action is genera
by the componentsv1 andv2 or by their linear combination
χ and χ̃ . We want to emphasize that the action for theχ, χ̃

corresponds to non-Abelian superfield model where the
operatorT �

c plays the role of an internal symmetry genera
including whole star-structure of the initial theory. Further
study a construction of the heat kernel and the effective ac
of the theory under consideration generalizing the techniq
[10] for NAC superspace.

5.2. The heat kernels on the covariantly constant backgrou

Above we have shown that the second variational der
tive of the action in sector of the superfieldsχ, χ̃ has the form
S

(2)
gauge+FG = ∫

d8zχH
χ

�̃
χ̃ where the operatorHχ

�̃
defined as

(32)H
χ

�̃
= ��̃ − iWα

�̃ ∇�̃α − iW̄ α̇
�̃ ∇̄�̃α̇ ,

and the notationsW�̃ = WT �
c and∇�̃ for D − iΓ T �

c were used.
We define the Green functionG(z, z′) of the operatorHχ

�̃
by

the equationHχ

�̃
G(z, z′) = −δ8(z − z′). Then one introduce

the heat kernelKχ(z, z′|s) associated with this Green functio
as G(z, z′) = ∫ ∞

0 ds K(z, z′|s)e−εs |ε→+0. It means that for-

mally Kχ(z, z′|s) = esH
χ

�̃ δ8(z − z′). The one-loop contribution
of the gauge superfields to the effective action is proportio
to Tr(Kχ) and gauge invariant due to the gauge transforma
law

Kχ(z, z′) → eiΛ(z)

�̃
Kχ(z, z′|s)e−iΛ(z′)

�̃
.

We rewrite the kernelKχ in the form

(33)Kχ(z, z′|s) = es(��̃−iWα
�̃

∇�̃α−iW̄ α̇
�̃

∇̄�̃α̇ )
(
δ8(z − z′)I (z, z′)

)
,
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where bi-scalarI (z, z′) satisfies the equationζA(z, z′) ×
∇A

�̃
I (z, z′) = 0 and boundary conditionI (z, z) = 1. Further

we will use the techniques developed in[10] adopting it to the
NAC superspace.

In order to calculate(33) we, first of all, write the operato
H

χ

�̃
(32) as followsH

χ

�̃
= ��̃ + V whereV = −iWα

�̃
∇�̃α −

iW̄ α̇
�̃
∇̄�̃α̇ and decompose the operator esH

χ

�̃ as

(34)
es(��̃+V ) = · · · × e+ s3

2 [V,[��̃,V ]]+ s3
6 [��̃,[��̃,V ]]e

s2
2 [��̃,V ]esV es��̃ .

It follows from (9) that for∇�̃αα̇W�̃β = 0 the first commutato
becomes

(35)[��̃, V ] = (
iWαT �

c W̄α̇ + iW̄α̇T �
c Wα

)
T �

c ∇αα̇
�̃ = 0,

because of the propertyWα(� + �−1)W̄α̇ = −W̄α̇(�−1 + �)Wα

which is valid for the chosen Abelian background. This id
tity leads to convenient factorization of the kernel in the fo
(see[10] for details in conventional superfield theory)

Kχ(z, z′|s) = U�̃(s)K̃(ζ |s)ζ 2ζ̄ 2I (z, z′),

(36)U�̃(s) = e−is(Wα
�̃

∇�̃α+W̄ α̇
�̃

∇̄�̃α̇ ).

Here we have used the chiral basis with coordinates(yαα̇,

θα, θ α̇) for calculations and the presentationδ8(z − z′) =
δ4(ζ αα̇)ζ 2ζ̄ 2. The translation invariant interval componen
ζA(z, z′) in the chiral basis are defined by

ζA = (
ζ αα̇, ζ α, ζ̄ α̇

)
= (

(y − y′)αα̇ − i(θ − θ ′)αθ̄ ′α̇, (θ − θ ′)α, (θ̄ − θ̄ )α̇
)
.

The Schwinger type heat kernelK̃(ζ |s) in (36) can be cal-
culated by the various methods and it is well known

K̃(ζ |s) = i

(4πs)2
exp

(
−1

2
tr ln�̃

sin�̃ sF/2

sF/2

)

(37)× e− 1
2s

ζ( sF
2 cot̃�

sF
2 )ζ ,

whereF
ββ̇
αα̇ = δ

β̇
α̇ f

β
α + δ

β
α f̄

β̇
α̇ andf

β
α , f̄

β̇
α̇ are the spinor com

ponents of the Abelian strengthsFmn.5 The contraction ove
indices in the right exponent goes only forζ αα̇ compo-
nents. The functionsf�̃(x) are given as an expansionf�̃(x) =∑∞

n=0
f (n)

n! (xT �
c (xT �

c (. . . T �
c x))).

Next step of calculations is obtaining the action of the op
atorU�̃(s) in (36). This operator contains covariant derivativ
which act on the interval componentsU�̃(s)ζ

A = ζA(s)U�̃(s).
Hence we should consider the adjoint action ofU on ζA. Intro-

ducing the notationN β

�̃α
= ∇�̃αW

β

�̃
, N̄ β̇

�̃α̇
= ∇̄�̃α̇W̄

β̇

�̃
we have for

adjoint actionU on the interval components

ζ α(s) = ζ α + Wδ
�̃

(
e−isN�̃ − 1

N�̃

)α

δ

,

(38)ζ̄ α̇(s) = ζ̄ α̇ + W̄ δ̇
�̃

(
e−isN̄�̃ − 1

N̄�̃

)α̇

δ̇

,

5 Also we point out the useful equation∇�̃αα̇K̃ + ( iF

eisF
�̃

−1
)
ββ̇
αα̇

ζββ̇ �̃K̃ = 0,

which allows us to get any order derivatives of the Schwinger type kernel.
-

(39)ζ αα̇(s) = ζ αα̇ +
s∫

0

dτ Wα
�̃ (τ )ζ̄ α̇(τ ),

whereWα(s)�̃ = W
β

�̃
(e−isN�̃ )αβ .

Next step is calculation ofU�̃I (z, z′) in (36). To do that we
write a differential equation

i
d

ds
U�̃(s)I (z, z′)

(40)= U�̃(s)(W�̃∇�̃ + W̄�̃∇̄�̃)U
−1
�̃

(s)U�̃(s)I (z, z′)

and solve it. Thus, we should construct the operators∇�̃A(s)

and act onI (z, z′). We pay attention that the procedure of c
culations, we discuss here, preserves manifest gauge invar
Therefore, to simplify the calculations, we can impose any
propriate gauge on background superfield. The treatment
I (z, z′) are very much simplified under conditionsI (z, z′) = 1
which is equivalent to the Fock–Schwinger gaugeζA �Γ�̃A = 0
or ∇�̃AI (z, z′) = −iI (z, z′)Γ�̃A (see details in[10] for conven-
tional superspace theories).

If in the chiral basis we have a supercovariant derivative∇′
�̃A

in the pointz′, then the supercovariant derivative∇�̃ satisfying
the Fock–Schwinger gauge in pointz has the form

∇�̃A = e+iy′mQm+iθ ′Qe+iθ̄ ′Q̄e+yαα̇∇′
�̃αα̇

+θα∇′
�̃α e

+θ̄ β̇ ∇̄′
�̃β̇ e−θ̄ ′ α̇ D̄α̇

× e−y′ββ̇ ∂ββ̇−θ ′αDα (∇′
�̃A)ey′ββ̇ ∂ββ̇+θ ′αDα eθ̄ ′ α̇ D̄α̇

(41)× e
−θ̄ β̇ ∇̄′

�̃β̇ e−yαα̇∇′
�̃αα̇

−θα∇′
�̃α e−iθ̄ ′Q̄e−iy′mQm−iθ ′Q.

The relation(41) leads to explicit expressions for the conne
tions in the Fock–Schwinger gauge:

∇̄�̃β̇ − D̄β̇ = −iΓ�̃β̇ = 0,

∇�̃β − Dβ = −iΓ�̃β

= 1

2
ζ

β̇
βLW̄ ′

�̃β̇
− i

2
ζβ

(
ζ̄ β̇ W̄ ′

�̃β̇

) − 1

2
ζ αα̇
L ζ̄ β̇F ′

�̃ββ̇,αα̇

+ iζ̄ 2(W ′
�̃β + ζ α(∇′

αW ′
�̃β )

)
,

∇�̃ββ̇ − ∂ββ̇ = −iΓ�̃ββ̇

= − i

2
ζ αα̇
L F ′

�̃αα̇,ββ̇
+ ζ̄β̇W ′

�̃β + 1

2
ζβW̄ ′

�̃β̇

(42)+ ζ̄β̇ ζ α(∇′
�̃αW ′

�̃β ).

First of these relations is the consequence of the supercova
derivative forms in the chiral basis(8). Using(42) one can find
the solution of Eq.(40) in the form

U�̃(s)I (z, z′)

= exp̃�

(
i

s∫
0

dτ

(
1

2
W�̃β(τ)ζ ββ̇ (τ )W̄ ′

�̃β̇

+ i

2
W

β

�̃
(τ )ζβ(τ )ζ̄ β̇ (τ )W̄ ′

�̃β̇

+ 1

2
W

β

�̃
(τ )ζ αα̇(τ )ζ̄ β̇ (τ )F ′

�̃ββ̇αα̇
− iζ̄ 2(τ )W

β

�̃
(τ )W ′

�̃β

(43)− iζ̄ 2(τ )W
β

�̃
(τ )ζ α(τ )f ′

�̃αβ

))
.
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Substituting theζA(s) (38)andU�̃I (z, z′) (43) into (36)and
taking into account(37)one gets finally the kernel

(44)Kχ(z, z′|s) = K̃(ζ |s)ζ 2(s)ζ̄ 2(s)U�̃(s)I (z, z′)
determining the effective action.

Now we discuss a structure of kernels corresponding to
ghost or to any adjoint chiral matter contribution to the effect
action. First of all we point out that the following relations ta
place in on-shell Abelian background

(45)∇̄2
�̃ esH

χ

�̃ = ∇̄2
�̃ es∇2

�̃
∇̄2

�̃ = es∇̄2
�̃
∇2

�̃ ∇̄2
�̃ = es��̃+∇̄2

�̃ ,

(46)∇2
�̃ esH

χ

�̃ = ∇2
�̃ es∇̄2

�̃
∇2

�̃ = es∇2
�̃
∇̄2

�̃ ∇2
�̃ = es��̃−∇2

�̃ .

Let us introduce the chiral and antichiral heat kernels

K+(z, z′|s) = ∇̄2
�̃Kχ (z, z′|s) = ∇̄′2

�̃ Kχ (z, z′|s),
(47)K−(z, z′|s) = ∇2

�̃Kχ (z, z′|s) = ∇′2
�̃ Kχ (z, z′|s).

The functionsG±(z, z′) defined asG±(z, z′) = ∫ ∞
0 ds K±(z,

z′|s)e−εs |ε→+0 satisfy the equations ��̃±G±(z, z′) =
−δ±(z, z′) where��̃± are the (anti)chiral d’Alambertians de
pending on background superfield in NAC superspace. It m
that the functions(47) are the kernels associated with the o
erators��̃±. Namely these kernels determine the one-lo
contribution to the effective action from any chiral matter
the adjoint representation. Since the kernels(47) are from the
kernelKχ we can substitute(44) into (47) and find these ker
nels

(48)K+(z, z′|s) = ∇̄′2
�̃ Kχ = −K̃(ζ |s)ζ 2(s)U�̃(s)I (z, z′),

K−(z, z′|s) = ∇′2
�̃ Kχ

= −K̃(ζ |s)ζ̄ 2(s)e
− 1

2ζα(s)ζαα̇(s)W̄ α̇
�̃

(s)

�̃

(49)× U�̃(s)I (z, z′).
These relations determine a contribution of the chiral adj
matter including ghost superfields into the one-loop effec
action.

In next subsection we consider heat traces associated
the heat kernels(44), (48), (49)and, particularly, coefficienta2
in the Schwinger–De Witt expansion of the low-energy eff
tive action.

5.3. Gauge fields and ghosts contribution to the effective
action SU(2) SYM theory

The one-loop contributionΓ (1) to the effective action fo
NAC SYM theory is defined with the help of theζ -functions
ζχ,±(ε) corresponding to the operatorsH

χ
� , ��̃± respectively

(50)Γ (1) = Γ (1)
χ + Γ

(1)
ghosts.

HereΓ
(1)
χ is pure SYM contribution andΓ (1)

ghosts is ghost con-
tribution. Each of these contributions is calculated via funct
ζ ′(0). In its turn, theζ -functions are given by integral represe
tations

(51)ζχ,±(ε) = 1

Γ (ε)

∞∫
ds

s1−ε
TrKχ,±

(
s

µ2

)
,

0

e

s

t

th

whereµ is the normalization point and Tr is an inherent fun
tional trace.

General structure ofKχ,±(z, z′|s) was discussed in Sec
tion 5.2(see(44), (48), (49)). One can show that TrKχ(s) does
not contain the holomorphic contributions and, hence, the
loop divergent contributions to the complete effective act
(50) is determined exclusively by the ghosts as in the conv
tional case[8].

To construct the divergent part of the effective action
should consider the behavior ofK±(z, z′|s)|z′=z at small s.
As usual, the kernel expansion looks likeK±(z, z|s) ∼
1
s2 (a0(z, z) + sa1(z, z) + s2a2(z, z) + · · ·). The coefficient
a2(z, z) is responsible for the divergences. Exact form of
kernel K±(z, z′|s) is given by(48), (49). The only thing we
should do is to study its behavior at smalls. One can show
that the coefficientsa0(z, z) = 0, a1(z, z) = 0. The coefficient
a2(z, z) includes the products of some number ofWα , some
number of superintervalsζA and some number of star-operato
T �

c acting on the intervals and superstrengths. Using the exp
form (6) of the operatorT �

c one can show that the final expre
sion for a2(z, z) is a sum of one for conventional superfie
theory plus a total derivative with respect to the variableθα

which is stipulated by action of the operatorT �
c on the superin-

tervalζA. As a result one obtains

(52)
∫

d6z a2(z, z|s) ∼
∫

d6zWαWα.

It leads to the divergent part of the effective action in the for

(53)Γ
(1)
div = −3

2
· 1

(4π)2

∫
d6zWαWα ln

µ2

Λ2
.

We see that the one-loop divergences on the Abelian b
ground are analogous to classical action what provides re
malizability.

The finite parts of the effective action is analyzed by kno
methods (see, e.g.,[12]).6 As a result one obtains

Γ (1)
χ = 1

8π2

∫
d8z

∞∫
0

ds se−sm2
W2

�̃ W̄2
�̃

cosh(sN�̃) − 1

(sN�̃)
2

(54)× cosh(sN̄�̃) − 1

(sN̄�̃)
2

s2(N 2
�̃

− N̄ 2
�̃
)

cosh(sN�̃) − cosh(sN̄�̃)
.

The finite part of the chiral contributions in the effective act
can be written in terms of the functionζ�̃ (24)

(55)Γ
(1)
ghosts=

1

(4π)2

∫
d8z

∞∫
0

ds e−sm2
W2

�̃ W̄2
�̃ ζ�̃(sN�̃, sN̄�̃).

Herem is an infrared regulator mass.
As a result, the one-loop effective action on the covaria

constant Abelian background is exactly calculated on the
of manifestly gauge invariant techniques in the NAC sup
space. We emphasize a role of the star-operatorT �

c for the
theories with fields in the adjoint representation.

6 We pay attention here only on aspects associated with�-structure of the
theory.



396 O.D. Azorkina et al. / Physics Letters B 633 (2006) 389–396

th

d
n-

e

-
th
ce
ion

ha
th
ta

iple

low
g

In

on
rm

tio

m

m-
ge
P,

al-
ect
p-
G
36

The
jec

905,

003)

ep-

09;

ep-

21;
p-

hep-

;
;
5;

ep-

049;
11,

ep-

ep-

n–

etry
sics,

p-

ep-

71,

0)

ep-
6. Summary

We have constructed a general procedure of calculating
effective action for SYM theory coupled to matter inN = 1/2
nonanticommutative superspace. The model is formulate
terms of�-product(3) associated with the parameter of nona
ticommutativityCαβ (1) and preserves a half of initialN = 1
supersymmetry. The effective action is formulated in fram
work of superspace background field method.

We developed a proper-time techniques inN = 1 superspace
consistent with gauge invariance and�-structure of the the
ory under consideration. Superfield heat kernel determining
structure of the one-loop effective action has been introdu
for the matter in the fundamental and adjoint representat
for SU(2) SYM theory.

The procedure for one-loop effective action calculation
been described. We have applied this procedure to finding
low-energy effective action for the matter in the fundamen
representation in an external constant Abelian vector mult
background(22) and for theN = 1/2 SYM model with gauge
groupSU(2) spontaneously broken down toU(1). It was shown
that in case of matter in fundamental representation the
energy effective action(23) is obtained from the correspondin
effective action for the conventionalN = 1 superfield theory by
inserting the�-products instead of ordinary point-products.
case of SYM theory, the effective action(54), (55)is also con-
structed on the base of the effective action for the conventi
SYM theory, where however the products are given in te
of the special star-operatorT �

c (6) introduced in the Letter. We
found that the models under consideration the effective ac
is gauge invariant and written completely in terms of�-product
and hence the classical�-product does not get any quantu
corrections.
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