42 research outputs found

    Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM

    Full text link
    We study the implications for electroweak baryogenesis (EWB) within the minimal supersymmetric Standard Model (MSSM) of present and future searches for the permanent electric dipole moment (EDM) of the electron, for neutralino dark matter, and for supersymmetric particles at high energy colliders. We show that there exist regions of the MSSM parameter space that are consistent with both present two-loop EDM limits and the relic density and that allow for successful EWB through resonant chargino and neutralino processes at the electroweak phase transition. We also show that under certain conditions the lightest neutralino may be simultaneously responsible for both the baryon asymmetry and relic density. We give present constraints on chargino/neutralino-induced EWB implied by the flux of energetic neutrinos from the Sun, the prospective constraints from future neutrino telescopes and ton-sized direct detection experiments, and the possible signatures at the Large Hadron Collider and International Linear Collider.Comment: 32 pages, 10 figures; version to appear on JHE

    Generalized Parton Distributions at x->1

    Full text link
    Generalized parton distributions at large xx are studied in perturbative QCD approach. As x1x\to 1 and at finite tt, there is no tt dependence for the GPDs which means that the active quark is at the center of the transverse space. We also obtain the power behavior: Hqπ(x,ξ,t)(1x)2/(1ξ2)H_q^\pi(x,\xi,t)\sim (1-x)^2/(1-\xi^2) for pion; Hq(x,ξ,t)(1x)3/(1ξ2)2H_q(x,\xi,t)\sim (1-x)^3/(1-\xi^2)^2 and Eq(x,ξ,t)(1x)5/(1ξ2)3f(ξ)E_q(x,\xi,t)\sim (1-x)^5/(1-\xi^2)^3f(\xi) for nucleon, where f(ξ)f(\xi) represents the additional dependence on ξ\xi.Comment: 7 pages, 2 figure

    Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x

    Get PDF
    A detailed study of inclusive deep inelastic scattering (DIS) from mirror A = 3 nuclei at large values of the Bjorken variable x is presented. The main purpose is to estimate the theoretical uncertainties on the extraction of the neutron DIS structure function from such nuclear measurements. On one hand, within models in which no modification of the bound nucleon structure functions is taken into account, we have investigated the possible uncertainties arising from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii) finite Q**2 effects neglected in the Bjorken limit, iii) the role of different prescriptions for the nucleon Spectral Function normalization providing baryon number conservation, and iv) the differences between the virtual nucleon and light cone formalisms. Although these effects have been not yet considered in existing analyses, our conclusion is that all these effects cancel at the level of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other hand we have considered several models in which the modification of the bound nucleon structure functions is accounted for to describe the EMC effect in DIS scattering from nuclei. It turns out that within these models the cancellation of nuclear effects is expected to occur only at a level of ~ 3%, leading to an accuracy of ~ 12 % in the extraction of the neutron to proton structure function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad range of models of the EMC effect is that the previously suggested iteration procedure does not improve the accuracy of the extraction of the neutron to proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in Section 4; no change in the conclusion

    Constraining models of the large scale Galactic magnetic field with WMAP5 polarization data and extragalactic Rotation Measure sources

    Full text link
    We introduce a method to quantify the quality-of-fit between data and observables depending on the large scale Galactic magnetic field. We combine WMAP5 polarized synchrotron data and Rotation Measures of extragalactic sources in a joint analysis to obtain best fit parameters and confidence levels for GMF models common in the literature. None of the existing models provide a good fit in both the disk and halo regions, and in many instances best-fit parameters are quite different than the original values. We note that probing a very large parameter space is necessary to avoid false likelihood maxima. The thermal and relativistic electron densities are critical for determining the GMF from the observables but they are not well constrained. We show that some characteristics of the electron densities can already be constrained using our method and with future data it may be possible to carry out a self-consistent analysis in which models of the GMF and electron densities are simultaneously optimized.Comment: 27 pages, 13 figures. Accepted for publication in JCAP; arXiv version updated to include minor revision

    Investigating reliable amyloid accumulation in Centiloids: Results from the AMYPAD Prognostic and Natural History Study.

    Get PDF
    To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-β (Aβ) accumulation based on Centiloids (CL) in pre-dementia populations. A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [ F]flutemetamol, [ F]florbetaben or [ F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95 percentile of longitudinal measurements in sub-populations (N  = 101/750, N  = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aβ-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. Our results support a 12-20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations. [Abstract copyright: © 2024 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

    Lambda and Sigma0 Pair Production in Two-Photon Collisions at LEP

    Full text link
    Strange baryon pair production in two-photon collisions is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- centre-of-mass energies from 91 GeV to 208 GeV, corresponding to an integrated luminosity of 844 pb-1. The processes gamma gamma -> Lambda Anti-lambda and gamma gamma -> Sigma0 Anti-sigma0 are identified. Their cross sections as a function of the gamma gamma centre-of-mass energy are measured and results are compared to predictions of the quark-diquark model

    Proton-Antiproton Pair Production in Two-Photon Collisions at LEP

    Get PDF
    The reaction e^+e^- -> e^+e^- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e^+e^- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb^-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models

    Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    Full text link
    Light-Front Holography, a remarkable feature of the AdS/CFT correspondence, maps amplitudes in anti-de Sitter (AdS) space to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schrodinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is identified with a Lorentz-invariant coordinate zeta which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions and the fall-off in the invariant mass of the constituents. The soft-wall holographic model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics -- a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions which describe the hadron's momentum and spin distributions needed to compute measures of hadron structure at the quark and gluon level. The effective confining potential also creates quark- antiquark pairs. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also presented.Comment: Presented at LIGHTCONE 2011, 23 - 27 May, 2011, Dallas, T

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200
    corecore