311 research outputs found

    Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis

    Get PDF
    The Tibetan Plateau is a prime example of a collisional orogen with widespread strike-slip faults whose age and tectonic significance remain controversial. We present new low-temperature thermochronometry to date periods of exhumation associated with Kunlun and Haiyuan faulting, two major strike-slip faults within the northeastern margin of Tibet. Apatite and zircon (U-Th)/He and apatite fission-track ages, which record exhumation from ∼2 to 6 km crustal depths, provide minimum bounds on fault timing. Results from Kunlun samples show increased exhumation rates along the western fault segment at circa 12-8 Ma with a possible earlier phase of motion from ∼30-20 Ma, along the central fault segment at circa 20-15 Ma, and along the eastern fault segment at circa 8-5 Ma. Combined with previous studies, our results suggest that motion along the Haiyuan fault may have occurred as early as ∼15 Ma along the western/central fault segment before initiating at least by 10-8 Ma along the eastern fault tip. We relate an ∼250 km wide zone of transpressional shear to synchronous Kunlun and Haiyuan fault motion and suggest that the present-day configuration of active faults along the northeastern margin of Tibet was likely established since middle Miocene time. We interpret the onset of transpression to relate to the progressive confinement of Tibet against rigid crustal blocks to the north and expansion of crustal thickening to the east during the later stages of orogen development. Key Points Low-T thermochronometry dates periods of exhumation along NE Tibet faults Left-lateral faulting by mid-to-late Miocene along the Kunlun and Haiyuan Faults Shift to widespread lateral faulting in late stage of Tibet collisional histor

    Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-th)/He thermochronology

    Get PDF
    High topography in central Asia is perhaps the most fundamental expression of the Cenozoic Indo-Asian collision, yet an understanding of the timing and rates of development of the Tibetan Plateau remains elusive. Here we investigate the Cenozoic thermal histories of rocks along the eastern margin of the plateau adjacent to the Sichuan Basin in an effort to determine when the steep topographic escarpment that characterizes this margin developed. Temperature-time paths inferred from 40Ar/39Ar thermochronology of biotite, multiple diffusion domain modeling of alkali feldspar40Ar release spectra, and (U-Th)/He thermochronology of zircon and apatite imply that rocks at the present-day topographic front of the plateau underwent slow cooling (<1°C/m.y.) from Jurassic times until the late Miocene or early Pliocene. The regional extent and consistency of thermal histories during this time period suggest the presence of a stable thermal structure and imply that regional denudation rates were low (<0.1 mm/yr for nominal continental geotherms). Beginning in the late Miocene or early Pliocene, these samples experienced a pronounced cooling event (>30°-50°C/m.y.) coincident with exhumation from inferred depths of ~8-10 km, at denudation rates of 1-2 mm/yr. Samples from the interior of the plateau continued to cool relatively slowly during the same time period (~3°C/m.y.), suggesting limited exhumation (1-2 km). However, these samples record a slight increase in cooling rate (from <1 to ~3°C/m.y.) at some time during the middle Tertiary; the tectonic significance of this change remains uncertain. Regardless, late Cenozoic denudation in this region appears to have been markedly heterogeneous, with the highest rates of exhumation focused at the topographic front of the plateau margin. We infer that the onset of rapid cooling at the plateau margin reflects the erosional response to the development of regionally significant topographic gradients between the plateau and the stable Sichuan Basin and thus marks the onset of deformation related to the development of the Tibetan Plateau in this region. The present margin of the plateau adjacent to and north of the Sichuan Basin is apparently no older than the late Miocene or early Pliocene (~5-12 Ma)

    The Landscape of Immune Microenvironments in Racially Diverse Breast Cancer Patients

    Get PDF
    Background: Immunotherapy is a rapidly evolving treatment option in breast cancer; However, the breast cancer immune microenvironment is understudied in Black and younger (<50 years) patients. Methods: We used histologic and RNA-based immunoprofiling methods to characterize the breast cancer immune landscape in 1,952 tumors from the Carolina Breast Cancer Study (CBCS), a population-based study that oversampled Black (n ¼ 1,030) and young women (n ¼ 1,039). We evaluated immune response leveraging markers for 10 immune cell populations, compared profiles to those in The Cancer Genome Atlas (TCGA) Project [n ¼ 1,095 tumors, Black (n ¼ 183), and young women (n ¼ 295)], and evaluated in association with clinical and demographic variables, including recurrence. Results: Consensus clustering identified three immune clusters in CBCS (adaptive-enriched, innate-enriched, or immune-quiet) that varied in frequency by race, age, tumor grade and subtype; however, only two clusters were identified in TCGA, which were predominantly comprised of adaptive-enriched and innate-enriched tumors. In CBCS, the strongest adaptive immune response was observed for basal-like, HER2-positive (HER2þ), triple-negative breast cancer (TNBC), and high-grade tumors. Younger patients had higher proportions of adaptive-enriched tumors, particularly among estrogen receptor (ER)-negative (ER-) cases. Black patients had higher frequencies of both adaptive-enriched and innate-enriched tumors. Immune clusters were associated with recurrence among ER- tumors, with adaptive-enriched showing the best and innate-enriched showing the poorest 5-year recurrence-free survival. Conclusions: These data suggest that immune microenvironments are intricately related to race, age, tumor subtype, and grade. Impact: Given higher mortality among Black and young women, more defined immune classification using cell-type–specific panels could help explain higher recurrence and ultimately lead to target-able interventions

    The Alvarez impact theory of mass extinction; limits to its applicability and the „great expectations syndrome”

    Get PDF
    For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous-Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force-fitting of data and interpretations ("great expectations syndrome". The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause-effect scenario for the Frasnian-Famennian, Permian-Triassic, and Triassic-Jurassic (and the Eifelian-Givetian and Paleocene-Eocene as well) global events include mostly item-1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F-F extinction is potentially seen in the context of item-2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item-3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi-impact lag-time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end-Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate-active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore