31 research outputs found

    Characteristics of Distinct Dietary Patterns in Rural Bangladesh: Nutrient Adequacy and Vulnerability to Shocks.

    Get PDF
    Food security in Bangladesh has improved in recent years, but the country is now facing a double burden of malnutrition while also being highly vulnerable to climate change. Little is known about how this may affect food supply to different sectors of the population. To inform this, we used a national dietary survey of 800 rural households to define dietary patterns using latent class analysis. Nutrient adequacy of dietary patterns and their potential vulnerability to climate shocks (based on diversity of calorie sources) were assessed. We fitted mixed effects logistic regression models to identify factors associated with dietary patterns. Four dietary patterns were identified: rice and low diversity; wheat and high diversity; pulses and vegetables; meat and fish. The wheat and high diversity and meat and fish patterns tended to be consumed by households with higher levels of wealth and education, while the rice and low diversity pattern was consumed by households with lower levels of wealth and education. The pulses and vegetables pattern was consumed by households of intermediate socio-economic status. While energy intake was high, fat and protein intake were suboptimal for all patterns except for the wheat and high diversity pattern. All patterns had fruit and vegetable intake below the WHO recommendation. The wheat and high diversity pattern was least vulnerable to shocks, while the rice and low diversity pattern was the most vulnerable, relying mainly on single cereal staples. The diets showed "double vulnerability" where the nutrient inadequate patterns were also those most vulnerable to shocks

    Adherence to EAT-Lancet dietary recommendations for health and sustainability in the Gambia.

    Get PDF
    Facilitating dietary change is pivotal to improving population health, increasing food system resilience, and minimizing adverse impacts on the environment, but assessment of the current 'status-quo' and identification of bottlenecks for improvement has been lacking to date. We assessed deviation of the Gambian diet from the EAT-Lancet guidelines for healthy and sustainable diets and identified leverage points to improve nutritional and planetary health. We analysed the 2015/16 Gambian Integrated Household Survey dataset comprising food consumption data from 12 713 households. Consumption of different food groups was compared against the EAT-Lancet reference diet targets to assess deviation from the guidelines. We computed a 'sustainable and healthy diet index (SHDI)' based on deviation of different food groups from the EAT-Lancet recommendations and modelled the socio-economic and geographic determinants of households that achieved higher scores on this index, using multivariable mixed effects regression. The average Gambian diet had very low adherence to EAT-Lancet recommendations. The diet was dominated by refined grains and added sugars which exceeded the recommendations. SHDI scores for nutritionally important food groups such as fruits, vegetables, nuts, dairy, poultry, and beef and lamb were low. Household characteristics associated with higher SHDI scores included: being a female-headed household, having a relatively small household size, having a schooled head of the household, having a high wealth index, and residing in an urban settlement. Furthermore, diets reported in the dry season and households with high crop production diversity showed increased adherence to the targets. While average Gambian diets include lower amounts of food groups with harmful environmental footprint, they are also inadequate in healthy food groups and are high in sugar. There are opportunities to improve diets without increasing their environmental footprint by focusing on the substitution of refined grains by wholegrains, reducing sugar and increasing fruit and vegetables consumption

    Long-term impact of West African food system responses to COVID-19.

    Get PDF
    The COVID-19 pandemic continues to impact health and livelihoods in West Africa. Exposure of food system fragilities by the pandemic presents the opportunity for regional-specific reforms to deliver healthy diets for all and promote resilience to future shocks

    Africa and the global carbon cycle

    Get PDF
    The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO(2). Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial: study protocol for a multicentre international trial of cardiac output-guided fluid therapy with low-dose inotrope infusion compared with usual care in patients undergoing major elective gastrointestinal surgery.

    Get PDF
    INTRODUCTION: Postoperative morbidity and mortality in older patients with comorbidities undergoing gastrointestinal surgery are a major burden on healthcare systems. Infections after surgery are common in such patients, prolonging hospitalisation and reducing postoperative short-term and long-term survival. Optimal management of perioperative intravenous fluids and inotropic drugs may reduce infection rates and improve outcomes from surgery. Previous small trials of cardiac-output-guided haemodynamic therapy algorithms suggested a modest reduction in postoperative morbidity. A large definitive trial is needed to confirm or refute this and inform widespread clinical practice. METHODS: The Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial is a multicentre, international, parallel group, open, randomised controlled trial. 2502 high-risk patients undergoing major elective gastrointestinal surgery will be randomly allocated in a 1:1 ratio using minimisation to minimally invasive cardiac output monitoring to guide protocolised administration of intravenous fluid combined with low-dose inotrope infusion, or usual care. The trial intervention will be carried out during and for 4 hours after surgery. The primary outcome is postoperative infection of Clavien-Dindo grade II or higher within 30 days of randomisation. Participants and those delivering the intervention will not be blinded to treatment allocation; however, outcome assessors will be blinded when feasible. Participant recruitment started in January 2017 and is scheduled to last 3 years, within 50 hospitals worldwide. ETHICS/DISSEMINATION: The OPTIMISE II trial has been approved by the UK National Research Ethics Service and has been approved by responsible ethics committees in all participating countries. The findings will be disseminated through publication in a widely accessible peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: ISRCTN39653756.The OPTIMISE II trial is supported by Edwards Lifesciences (Irvine, CA) and the UK National Institute for Health Research through RMP’s NIHR Professorship

    Socio-economic and food system drivers of nutrition and health transitions in The Gambia from 1990 to 2017

    Get PDF
    In common with many nations undergoing a nutrition transition, micronutrient deficiencies, undernutrition and overnutrition coexist in The Gambia. Addressing these challenges simultaneously would require transformational changes in the country's food system. However, the evidence base that would enable informed decision-making in the Gambian food system has been scant, despite several sources of routinely-collected data being available. This descriptive study brings together data from four open-access global databases on food supply, political, economic, and demographic variables, and nutrition and health between 1990 and 2017 to study potential leverage points for improvement in the food system. It compares trends in food supply and nutritional outcomes in The Gambia against regional and global averages, and identifies potential drivers taken from a food systems framework. The data show that, over the past three decades, total energy supply has increased, and obesity is rising quickly, but iron deficiency persists in a proportion of the population. Overall diet composition is poor, with lower availability of fruit and vegetables and higher supply of sugar and oils compared to regional and global averages. Domestic production is low for most food groups and so a high dependence on imports from other countries bridges the gap in terms of energy supply. Measures of economic development, particularly GDP, were positively related with supply of cereals and animal source foods over time, but no such relationship was observed with fruit and vegetable supply. Food system policy to improve nutrition and health outcomes in The Gambia needs to focus on improving the diversity of food supply – especially fruit and vegetables - and maximizing national domestic production to reduce reliance on food imports. The use of open-source global datasets can be feasible in exploring food system characteristics and trends at the national level and could be applied in other contexts
    corecore