157 research outputs found

    Diagnostic performance of morphometric vertebral fracture analysis (MXA) in children using a 33-point software program

    Get PDF
    Background There is significant inter and intraobserver variability in diagnosing vertebral fractures in children. Purpose We aimed to evaluate the diagnostic accuracy of morphometric vertebral fracture analysis (MXA) using a 33-point software program designed for adults, on dual-energy x-ray absorptiometry (DXA) images of children. Materials and methods Lateral spine DXA images of 420 children aged between 5 and 18 years were retrospectively reviewed. Vertebral fracture assessment (VFA) by an expert pediatric radiologist using Genant's semiquantitative scoring system served as the gold standard. All 420 DXA scans were analyzed by a trained radiographer, using semi-automated software (33-point morphometry). VFA of a random sample of 100 DXA was performed by an experienced pediatric clinical scientist. MXA of a random sample of 30 DXA images were analyzed by three pediatric radiologists and the pediatric clinical scientist. Diagnostic accuracy and inter and intraobserver agreement (kappa statistics) were calculated. Results Overall sensitivity, specificity, false positive (FP) and false negative (FN) rates for the radiographer using the MXA software were 80%, 90%, 10%, and 20% respectively and for mild fractures alone were 46%, 92%, 8%, and 54% respectively. Overall sensitivity, specificity, FP, and FN rates for the four additional observers using MXA were 89%, 79%, 21%, and 11% respectively and for mild fractures alone were 36%, 86%, 14%, and 64% respectively. Agreement between two expert observers was fair to good for VFA and MXA [kappa = 0·29 to 0·76 (95% CI: 0·17–0·88) and 0·29 to 0·69 (95% CI: 0·17–0·83)] respectively. Conclusion MXA using a 33-point technique developed for adults is not a reliable method for the identification of mild vertebral fractures in children. A pediatric standard is required which not only incorporates specific vertebral body height ratios but also the age-related physiological changes in vertebral shape that occur throughout childhood

    Evaluation of a semi-automated software program for the identification of vertebral fractures in children.

    Get PDF
    AIM: To assess observer reliability and diagnostic accuracy in children, of a semi-automated six-point technique developed for vertebral fracture (VF) diagnosis in adults, which records percentage loss of vertebral body height. MATERIALS AND METHODS: Using a semi-automated software program, five observers independently assessed T4 to L4 from the lateral spine radiographs of 137 children and adolescents for VF. A previous consensus read by three paediatric radiologists using a simplified algorithm-based qualitative technique (i.e., no software involved) served as the reference standard. RESULTS: Of a total of 1,781 vertebrae, 1,187 (67%) were adequately visualised according to three or more observers. Interobserver agreement in vertebral readability for each vertebral level for five observers ranged from 0.05 to 0.47 (95% CI: -0.19, 0.76). Intra-observer agreement using the intraclass correlation coefficient (ICC) ranged from 0.25 to 0.61. The overall sensitivity and specificity were 18% (95% CI: 14-22) and 97% (95% CI: 97-98), respectively. CONCLUSION: In contrast to adults, the six-point technique assessing anterior, middle, and posterior vertebral height ratios is neither satisfactorily reliable nor sensitive for VF diagnosis in children. Training of the software on paediatric images is required in order to develop a paediatric standard that incorporates not only specific vertebral body height ratios but also the age-related physiological changes in vertebral shape that occur throughout childhood

    Conditions for the freezing phenomena of geometric measure of quantum discord for arbitrary two-qubit X states under non-dissipative dephasing noises

    Full text link
    We study the dynamics of geometric measure of quantum discord (GMQD) under the influences of two local phase damping noises. Consider the two qubits initially in arbitrary X-states, we find the necessary and sufficient conditions for which GMQD is unaffected for a finite period. It is further shown that such results also hold for the non-Markovian dephasing process.Comment: 4 pages, 2 figure

    Mir-21-Sox2 Axis Delineates Glioblastoma Subtypes with Prognostic Impact.

    Get PDF
    UNLABELLED: Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development

    Various correlations in a Heisenberg XXZ spin chain both in thermal equilibrium and under the intrinsic decoherence

    Full text link
    In this paper we discuss various correlations measured by the concurrence (C), classical correlation (CC), quantum discord (QD), and geometric measure of discord (GMD) in a two-qubit Heisenberg XXZ spin chain in the presence of external magnetic field and Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interaction. Based on the analytically derived expressions for the correlations for the cases of thermal equilibrium and the inclusion of intrinsic decoherence, we discuss and compare the effects of various system parameters on the correlations in different cases. The results show that the anisotropy Jz is considerably crucial for the correlations in thermal equilibrium at zero temperature limit but ineffective under the consideration of the intrinsic decoherence, and these quantities decrease as temperature T rises on the whole. Besides, J turned out to be constructive, but B be detrimental in the manipulation and control of various quantities both in thermal equilibrium and under the intrinsic decoherence which can be avoided by tuning other system parameters, while D is constructive in thermal equilibrium, but destructive in the case of intrinsic decoherence in general. In addition, for the initial state Ψ1(0)>=12(01>+10>)|\Psi_1(0) > = \frac{1}{\sqrt{2}} (|01 > + |10 >), all the correlations except the CC, exhibit a damping oscillation to a stable value larger than zero following the time, while for the initial state Ψ2(0)>=12(00>+11>)|\Psi_2(0) > = \frac{1}{\sqrt{2}} (|00 > + |11 >), all the correlations monotonously decrease, but CC still remains maximum. Moreover, there is not a definite ordering of these quantities in thermal equilibrium, whereas there is a descending order of the CC, C, GMD and QD under the intrinsic decoherence with a nonnull B when the initial state is Ψ2(0)>|\Psi_2(0) >.Comment: 8 pages, 7 figure

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio
    corecore