302 research outputs found

    Quantum groups and nonabelian braiding in quantum Hall systems

    Full text link
    Wave functions describing quasiholes and electrons in nonabelian quantum Hall states are well known to correspond to conformal blocks of certain coset conformal field theories. In this paper we explicitly analyse the algebraic structure underlying the braiding properties of these conformal blocks. We treat the electrons and the quasihole excitations as localised particles carrying charges related to a quantum group that is determined explicitly for the cases of interest. The quantum group description naturally allows one to analyse the braid group representations carried by the multi-particle wave functions. As an application, we construct the nonabelian braid group representations which govern the exchange of quasiholes in the fractional quantum Hall effect states that have been proposed by N. Read and E. Rezayi, recovering the results of C. Nayak and F. Wilczek for the Pfaffian state as a special case.Comment: 60 pages, 7 figures, LaTeX, uses AMSfont

    On Short and Semi-Short Representations for Four Dimensional Superconformal Symmetry

    Get PDF
    Possible short and semi-short representations for N=2\N=2 and N=4\N=4 superconformal symmetry in four dimensions are discussed. For N=4\N=4 the well known short supermultiplets whose lowest dimension conformal primary operators correspond to \half-BPS or 14{1\over 4}-BPS states and are scalar fields belonging to the SU(4)rSU(4)_r symmetry representations [0,p,0][0,p,0] and [q,p,q][q,p,q] and having scale dimension Δ=p\Delta =p and Δ=2q+p\Delta = 2q+p respectively are recovered. The representation content of semi-short multiplets, which arise at the unitarity threshold for long multiplets, is discussed. It is shown how, at the unitarity threshold, a long multiplet can be decomposed into four semi-short multiplets. If the conformal primary state is spinless one of these becomes a short multiplet. For N=4\N=4 a 14{1\over 4}-BPS multiplet need not have a protected dimension unless the primary state belongs to a [1,p,1][1,p,1] representation.Comment: 54 pages, plain TeX file using harvma

    On Four-Point Functions of Half-BPS Operators in General Dimensions

    Full text link
    We study four-point correlation functions of half-BPS operators of arbitrary weight for all dimensions d=3,4,5,6 where superconformal theories exist. Using harmonic superspace techniques, we derive the superconformal Ward identities for these correlators and present them in a universal form. We then solve these identities, employing Jack polynomial expansions. We show that the general solution is parameterized by a set of arbitrary two-variable functions, with the exception of the case d=4, where in addition functions of a single variable appear. We also discuss the operator product expansion using recent results on conformal partial wave amplitudes in arbitrary dimension.Comment: The discussion of the case d=6 expanded; references added/correcte

    The Morphology of N=6 Chern-Simons Theory

    Full text link
    We tabulate various properties of the language of N=6 Chern-Simons Theory, in the sense of Polyakov. Specifically we enumerate and compute character formulas for all syllables of up to four letters, i.e. all irreducible representations of OSp(6|4) built from up to four fundamental fields of the ABJM theory. We also present all tensor product decompositions for up to four singletons and list the (cyclically invariant) four-letter words, which correspond to single-trace operators of length four. As an application of these results we use the two-loop dilatation operator to compute the leading correction to the Hagedorn temperature of the weakly-coupled planar ABJM theory on R \times S^2.Comment: 41 pages, 1 figure; v2: minor correction

    Phase separation in star polymer-colloid mixtures

    Get PDF
    We examine the demixing transition in star polymer-colloid mixtures for star arm numbers f=2,6,16,32 and different star-colloid size ratios. Theoretically, we solve the thermodynamically self-consistent Rogers-Young integral equations for binary mixtures using three effective pair potentials obtained from direct molecular computer simulations. The numerical results show a spinodal instability. The demixing binodals are approximately calculated, and found to be consistent with experimental observations.Comment: 4 pages, 4 figures, submitted to PR

    Reaction mechanisms in the 6Li+59Co system

    Get PDF
    The reactions induced by the weakly bound 6Li projectile interacting with the intermediate mass target 59Co were investigated. Light charged particles singles and α\alpha-dd coincidence measurements were performed at the near barrier energies E_lab = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis, Continuum-Discretized Coupled-Channels calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section.Comment: 30 pages, 8 figure

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances rξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore