3,551 research outputs found

    Extremal Black Attractors in 8D Maximal Supergravity

    Full text link
    Motivated by the new higher D-supergravity solutions on intersecting attractors obtained by Ferrara et al. in [Phys.Rev.D79:065031-2009], we focus in this paper on 8D maximal supergravity with moduli space [SL(3,R)/SO(3)]x[SL(2,R)/SO(2)] and study explicitly the attractor mechanism for various configurations of extremal black p- branes (anti-branes) with the typical near horizon geometries AdS_{p+2}xS^{m}xT^{6-p-m} and p=0,1,2,3,4; 2<=m<=6. Interpretations in terms of wrapped M2 and M5 branes of the 11D M-theory on 3-torus are also given. Keywords: 8D supergravity, black p-branes, attractor mechanism, M-theory.Comment: 37 page

    Singularities of nn-fold integrals of the Ising class and the theory of elliptic curves

    Full text link
    We introduce some multiple integrals that are expected to have the same singularities as the singularities of the n n-particle contributions χ(n)\chi^{(n)} to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equation satisfied by these multiple integrals for n=1,2,3,4 n=1, 2, 3, 4 and only modulo some primes for n=5 n=5 and 6 6, thus providing a large set of (possible) new singularities of the χ(n)\chi^{(n)}. We discuss the singularity structure for these multiple integrals by solving the Landau conditions. We find that the singularities of the associated ODEs identify (up to n=6n= 6) with the leading pinch Landau singularities. The second remarkable obtained feature is that the singularities of the ODEs associated with the multiple integrals reduce to the singularities of the ODEs associated with a {\em finite number of one dimensional integrals}. Among the singularities found, we underline the fact that the quadratic polynomial condition 1+3w+4w2=0 1+3 w +4 w^2 = 0, that occurs in the linear differential equation of χ(3) \chi^{(3)}, actually corresponds to a remarkable property of selected elliptic curves, namely the occurrence of complex multiplication. The interpretation of complex multiplication for elliptic curves as complex fixed points of the selected generators of the renormalization group, namely isogenies of elliptic curves, is sketched. Most of the other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting an interpretation in terms of (motivic) mathematical structures beyond the theory of elliptic curves.Comment: 39 pages, 7 figure

    System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS

    Get PDF
    An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last four years. This spectrometer will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the end-cap region. The test set-up emulates one projective tower of the barrel (six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC and three TGCs). The barrel and end-cap stands have also been equipped with optical alignment systems, aiming at a relative positioning of the precision chambers in each tower to 30-40 micrometers. In addition to the performance of the detectors and the alignment scheme, many other systems aspects of the ATLAS muon spectrometer have been tested and validated with this setup, such as the mechanical detector integration and installation, the detector control system, the data acquisition, high level trigger software and off-line event reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have allowed measuring the trigger and tracking performance of this set-up, in a configuration very similar to the final spectrometer. A special bunched muon beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used to study the timing resolution and bunch identification performance of the trigger chambers. The ATLAS first-level trigger chain has been operated with muon trigger signals for the first time

    Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    Full text link
    Lattice statistical mechanics, often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in a general mathematical framework, be too complex, or could not be defined. Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau ODEs, associated with double hypergeometric series, we show that holonomic functions are actually a good framework for actually finding the singular manifolds. We, then, analyse the singular algebraic varieties of the n-fold integrals χ(n) \chi^{(n)}, corresponding to the decomposition of the magnetic susceptibility of the anisotropic square Ising model. We revisit a set of Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find a first set of non-Nickelian singularities for χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, that also turns out to be rational or ellipic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model. We address, from a birational viewpoint, the emergence of families of elliptic curves, and of Calabi-Yau manifolds on such problems. We discuss the accumulation of these singular curves for the non-holonomic anisotropic full susceptibility.Comment: 36 page

    Beyond series expansions: mathematical structures for the susceptibility of the square lattice Ising model

    Full text link
    We first study the properties of the Fuchsian ordinary differential equations for the three and four-particle contributions χ(3) \chi^{(3)} and χ(4) \chi^{(4)} of the square lattice Ising model susceptibility. An analysis of some mathematical properties of these Fuchsian differential equations is sketched. For instance, we study the factorization properties of the corresponding linear differential operators, and consider the singularities of the three and four-particle contributions χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, versus the singularities of the associated Fuchsian ordinary differential equations, which actually exhibit new ``Landau-like'' singularities. We sketch the analysis of the corresponding differential Galois groups. In particular we provide a simple, but efficient, method to calculate the so-called ``connection matrices'' (between two neighboring singularities) and deduce the singular behaviors of χ(3) \chi^{(3)} and χ(4) \chi^{(4)}. We provide a set of comments and speculations on the Fuchsian ordinary differential equations associated with the n n-particle contributions χ(n) \chi^{(n)} and address the problem of the apparent discrepancy between such a holonomic approach and some scaling results deduced from a Painlev\'e oriented approach.Comment: 21 pages Proceedings of the Counting Complexity conferenc

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore