28 research outputs found

    The contribution of CACNA1A, ATP1A2 and SCN1A mutations in hemiplegic migraine : A clinical and genetic study in Finnish migraine families

    Get PDF
    Objective To study the position of hemiplegic migraine in the clinical spectrum of migraine with aura and to reveal the importance of CACNA1A, ATP1A2 and SCN1A in the development of hemiplegic migraine in Finnish migraine families. Methods The International Classification of Headache Disorders 3rd edition criteria were used to determine clinical characteristics and occurrence of hemiplegic migraine, based on detailed questionnaires, in a Finnish migraine family collection consisting of 9087 subjects. Involvement of CACNA1A, ATP1A2 and SCN1A was studied using whole exome sequencing data from 293 patients with hemiplegic migraine. Results Overall, hemiplegic migraine patients reported clinically more severe headache and aura episodes than non-hemiplegic migraine with aura patients. We identified two mutations, c.1816G>A (p.Ala606Thr) and c.1148G>A (p.Arg383His), in ATP1A2 and one mutation, c.1994C>T (p.Thr665Met) in CACNA1A. Conclusions The results highlight hemiplegic migraine as a clinically and genetically heterogeneous disease. Hemiplegic migraine patients do not form a clearly separate group with distinct symptoms, but rather have an extreme phenotype in the migraine with aura continuum. We have shown that mutations in CACNA1A, ATP1A2 and SCN1A are not the major cause of the disease in Finnish hemiplegic migraine patients, suggesting that there are additional genetic factors contributing to the phenotype.Peer reviewe

    HMG-CoA reductase is a potential therapeutic target for migraine:a mendelian randomization study

    Get PDF
    Statins are thought to have positive effects on migraine but existing data are inconclusive. We aimed to evaluate the causal effect of such drugs on migraines using Mendelian randomization. We used four types of genetic instruments as proxies for HMG-CoA reductase inhibition. We included the expression quantitative trait loci of the HMG-CoA reductase gene and genetic variation within or near the HMG-CoA reductase gene region. Variants were associated with low-density lipoprotein cholesterol, apolipoprotein B, and total cholesterol. Genome-wide association study summary data for the three lipids were obtained from the UK Biobank. Comparable data for migraine were obtained from the International Headache Genetic Consortium and the FinnGen Consortium. Inverse variance weighting method was used for the primary analysis. Additional analyses included pleiotropic robust methods, colocalization, and meta-analysis. Genetically determined high expression of HMG-CoA reductase was associated with an increased risk of migraines (OR = 1.55, 95% CI 1.30–1.84, P = 6.87 × 10−7). Similarly, three genetically determined HMG-CoA reductase-mediated lipids were associated with an increased risk of migraine. These conclusions were consistent across meta-analyses. We found no evidence of bias caused by pleiotropy or genetic confounding factors. These findings support the hypothesis that statins can be used to treat migraine.</p

    Migraine, inflammatory bowel disease and celiac disease:A Mendelian randomization study

    Get PDF
    Objective: To assess whether migraine may be genetically and/or causally associated with inflammatory bowel disease (IBD) or celiac disease. Background: Migraine has been linked to IBD and celiac disease in observational studies, but whether this link may be explained by a shared genetic basis or could be causal has not been established. The presence of a causal association could be clinically relevant, as treating one of these medical conditions might mitigate the symptoms of a causally linked condition. Methods:Linkage disequilibrium score regression and two-sample bidirectional Mendelian randomization analyses were performed using summary statistics from cohort-based genome-wide association studies of migraine (59,674 cases; 316,078 controls), IBD (25,042 cases; 34,915 controls) and celiac disease (11,812 or 4533 cases; 11,837 or 10,750 controls). Migraine with and without aura were analyzed separately, as were the two IBD subtypes Crohn's disease and ulcerative colitis. Positive control analyses and conventional Mendelian randomization sensitivity analyses were performed.Results: Migraine was not genetically correlated with IBD or celiac disease. No evidence was observed for IBD (odds ratio [OR] 1.00, 95% confidence interval [CI] 0.99–1.02, p = 0.703) or celiac disease (OR 1.00, 95% CI 0.99–1.02, p = 0.912) causing migraine or migraine causing either IBD (OR 1.08, 95% CI 0.96–1.22, p = 0.181) or celiac disease (OR 1.08, 95% CI 0.79–1.48, p = 0.614) when all participants with migraine were analyzed jointly. There was some indication of a causal association between celiac disease and migraine with aura (OR 1.04, 95% CI 1.00–1.08, p = 0.045), between celiac disease and migraine without aura (OR 0.95, 95% CI 0.92–0.99, p = 0.006), as well as between migraine without aura and ulcerative colitis (OR 1.15, 95% CI 1.02–1.29, p = 0.025). However, the results were not significant after multiple testing correction. Conclusions: We found no evidence of a shared genetic basis or of a causal association between migraine and either IBD or celiac disease, although we obtained some indications of causal associations with migraine subtypes.</p

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Migraine polygenic risk score associates with efficacy of migraine-specific drugs

    Get PDF
    Objective To assess whether the polygenic risk score (PRS) for migraine is associated with acute and/or prophylactic migraine treatment response. Methods We interviewed 2,219 unrelated patients at the Danish Headache Center using a semistructured interview to diagnose migraine and assess acute and prophylactic drug response. All patients were genotyped. A PRS was calculated with the linkage disequilibrium pred algorithm using summary statistics from the most recent migraine genome-wide association study comprising ∼375,000 cases and controls. The PRS was scaled to a unit corresponding to a twofold increase in migraine risk, using 929 unrelated Danish controls as reference. The association of the PRS with treatment response was assessed by logistic regression, and the predictive power of the model by area under the curve using a case-control design with treatment response as outcome. Results A twofold increase in migraine risk associates with positive response to migraine-specific acute treatment (odds ratio [OR] = 1.25 [95% confidence interval (CI) = 1.05–1.49]). The association between migraine risk and migraine-specific acute treatment was replicated in an independent cohort consisting of 5,616 triptan users with prescription history (OR = 3.20 [95% CI = 1.26–8.14]). No association was found for acute treatment with non–migraine-specific weak analgesics and prophylactic treatment response. Conclusions The migraine PRS can significantly identify subgroups of patients with a higher-than-average likelihood of a positive response to triptans, which provides a first step toward genetics-based precision medicine in migraine

    Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    Get PDF
    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10−8) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies

    Migraine, inflammatory bowel disease and celiac disease: A Mendelian randomization study

    No full text
    Objective: To assess whether migraine may be genetically and/or causally associated with inflammatory bowel disease (IBD) or celiac disease. Background: Migraine has been linked to IBD and celiac disease in observational studies, but whether this link may be explained by a shared genetic basis or could be causal has not been established. The presence of a causal association could be clinically relevant, as treating one of these medical conditions might mitigate the symptoms of a causally linked condition. Methods: Linkage disequilibrium score regression and two-sample bidirectional Mendelian randomization analyses were performed using summary statistics from cohort-based genome-wide association studies of migraine (59,674 cases; 316,078 controls), IBD (25,042 cases; 34,915 controls) and celiac disease (11,812 or 4533 cases; 11,837 or 10,750 controls). Migraine with and without aura were analyzed separately, as were the two IBD subtypes Crohn's disease and ulcerative colitis. Positive control analyses and conventional Mendelian randomization sensitivity analyses were performed. Results: Migraine was not genetically correlated with IBD or celiac disease. No evidence was observed for IBD (odds ratio [OR] 1.00, 95% confidence interval [CI] 0.99–1.02, p = 0.703) or celiac disease (OR 1.00, 95% CI 0.99–1.02, p = 0.912) causing migraine or migraine causing either IBD (OR 1.08, 95% CI 0.96–1.22, p = 0.181) or celiac disease (OR 1.08, 95% CI 0.79–1.48, p = 0.614) when all participants with migraine were analyzed jointly. There was some indication of a causal association between celiac disease and migraine with aura (OR 1.04, 95% CI 1.00–1.08, p = 0.045), between celiac disease and migraine without aura (OR 0.95, 95% CI 0.92–0.99, p = 0.006), as well as between migraine without aura and ulcerative colitis (OR 1.15, 95% CI 1.02–1.29, p = 0.025). However, the results were not significant after multiple testing correction. Conclusions: We found no evidence of a shared genetic basis or of a causal association between migraine and either IBD or celiac disease, although we obtained some indications of causal associations with migraine subtypes

    A genome-wide cross-phenotype meta-analysis of the association of blood pressure with migraine

    No full text
    Blood pressure (BP) was inconsistently associated with migraine and the mechanisms of BP-lowering medications in migraine prophylaxis are unknown. Leveraging large-scale summary statistics for migraine (Ncases/Ncontrols = 59,674/316,078) and BP (N = 757,601), we find positive genetic correlations of migraine with diastolic BP (DBP, rg = 0.11, P = 3.56 × 10−06) and systolic BP (SBP, rg = 0.06, P = 0.01), but not pulse pressure (PP, rg = −0.01, P = 0.75). Cross-trait meta-analysis reveals 14 shared loci (P ≤ 5 × 10−08), nine of which replicate (P < 0.05) in the UK Biobank. Five shared loci (ITGB5, SMG6, ADRA2B, ANKDD1B, and KIAA0040) are reinforced in gene-level analysis and highlight potential mechanisms involving vascular development, endothelial function and calcium homeostasis. Mendelian randomization reveals stronger instrumental estimates of DBP (OR [95% CI] = 1.20 [1.15–1.25]/10 mmHg; P = 5.57 × 10−25) on migraine than SBP (1.05 [1.03–1.07]/10 mmHg; P = 2.60 × 10−07) and a corresponding opposite effect for PP (0.92 [0.88–0.95]/10 mmHg; P = 3.65 × 10−07). These findings support a critical role of DBP in migraine susceptibility and shared biology underlying BP and migraine
    corecore