69 research outputs found

    Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC technical report)

    Get PDF
    The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare earth elements) and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern due to widespread illegal shipments, weak environmental as well as health and safety regulations, lack of technology and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders to devise integrated management strategies to tackle this global environmental concern

    Atomic spectrometry update – a review of advances in environmental analysis

    Full text link

    A propellant model - Oxidizer and fuel with differing kinetic parameters

    No full text

    Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena-Anabar coastal lowland

    Get PDF
    Extensive parts of Arctic permafrost-dominated lowlands were affected by large-scale permafrost degradation, mainly through Holocene thermokarst activity. The effect of thermokarst is nowadays observed in most periglacial lowlands of the Arctic. Since permafrost degradation is a consequence as well as a signifi cant factor of global climate change, it is necessary to develop effi cient methods for the quantifi cation of its past and current magnitude. We developed a procedure for the quantifi cation of periglacial lowland terrain types with a focus on degradation features and applied it to the Cape Mamontov Klyk area in the western Laptev Sea region. Our terrain classifi cation approach was based on a combination of geospatial datasets, including a supervised maximum likelihood classifi cation applied to Landsat-7 ETM+ data and digital elevation data. Thirteen fi nal terrain surface classes were extracted and subsequently characterized in terms of relevance to thermokarst and degradation of ice-rich deposits. 78 % of the investigated area was estimated to be affected by permafrost degradation. The overall classifi cation accuracy was 79 %. Thermokarst did not develop evenly on the coastal plain, as indicated by the increasingly dense coverage of thermokarst-related areas from south to north. This regionally focused procedure can be extended to other areas to provide the highly detailed periglacial terrain mapping capabilities currently lacking in global-scale permafrost datasets
    • …
    corecore