615 research outputs found

    Binding of Polarons and Atoms at Threshold

    Get PDF
    If the polaron coupling constant Îą\alpha is large enough, bipolarons or multi-polarons will form. When passing through the critical Îąc\alpha_c from above, does the radius of the system simply get arbitrarily large or does it reach a maximum and then explodes? We prove that it is always the latter. We also prove the analogous statement for the Pekar-Tomasevich (PT) approximation to the energy, in which case there is a solution to the PT equation at Îąc\alpha_c. Similarly, we show that the same phenomenon occurs for atoms, e.g., helium, at the critical value of the nuclear charge. Our proofs rely only on energy estimates, not on a detailed analysis of the Schr\"odinger equation, and are very general. They use the fact that the Coulomb repulsion decays like 1/r1/r, while `uncertainty principle' localization energies decay more rapidly, as 1/r21/r^2.Comment: 19 page

    Quasichemical Models of Multicomponent Nonlinear Diffusion

    Full text link
    Diffusion preserves the positivity of concentrations, therefore, multicomponent diffusion should be nonlinear if there exist non-diagonal terms. The vast variety of nonlinear multicomponent diffusion equations should be ordered and special tools are needed to provide the systematic construction of the nonlinear diffusion equations for multicomponent mixtures with significant interaction between components. We develop an approach to nonlinear multicomponent diffusion based on the idea of the reaction mechanism borrowed from chemical kinetics. Chemical kinetics gave rise to very seminal tools for the modeling of processes. This is the stoichiometric algebra supplemented by the simple kinetic law. The results of this invention are now applied in many areas of science, from particle physics to sociology. In our work we extend the area of applications onto nonlinear multicomponent diffusion. We demonstrate, how the mechanism based approach to multicomponent diffusion can be included into the general thermodynamic framework, and prove the corresponding dissipation inequalities. To satisfy thermodynamic restrictions, the kinetic law of an elementary process cannot have an arbitrary form. For the general kinetic law (the generalized Mass Action Law), additional conditions are proved. The cell--jump formalism gives an intuitively clear representation of the elementary transport processes and, at the same time, produces kinetic finite elements, a tool for numerical simulation.Comment: 81 pages, Bibliography 118 references, a review paper (v4: the final published version

    Research from therapeutic radiographers : an audit of research capacity within the UK

    Get PDF
    Research from Allied Health Professionals (AHPs) is anecdotally known to lag behind that of other professions. The developing research landscape within other therapies and internationally led us to question how UK practice in therapeutic radiography was developing. The aim of the survey was to audit research capacity across therapy radiography in the UK. Method: An electronic survey was sent to Radiotherapy Service Managers (RSM) and research leads in each of the radiotherapy centres in the UK. An adapted version of the 'Auditing Research Capacity' tool (ARC Š tool) was used as the basis of the questionnaire. Results: A total of 45 RSM responded to the survey (67% response rate) and 30 Research radiographers (RR) (45% response rate). A total of 51 RR were in post equating to 40.3 whole time equivalents and averaging 1 RR per centre. Variation was evident in the commitment to the development of a research culture identified by practices such as linking research to the business planning cycle, inclusion of research in recruitment and advertising materials, or having a nominated therapeutic radiographer lead on research for the department. Over a third of responding centres did not have a research strategy and training for RRs was limited; specifically in areas such as writing funding bids, writing for publication and the research and governance process. Conclusion: A number of short and long-term strategies are proposed that should enhance a positive research culture and improve research capacity for therapeutic radiography led research. These include utilisation of the existing infrastructure provided by the National Institute for Health Research, a lead or co-ordinator for research activity with a remit to motivate others. Development of links and networks, and the development of a research strategy linked to wider Trust research priorities. The research strategy should include mentoring or developing appropriate research skills for those engaged in research (including higher degree qualifications). RSMs should also encourage peer-reviewed publications, and conference presentations from all staff to ensure research results are disseminated to the wider profession

    CUORE: A Cryogenic Underground Observatory for Rare Events

    Get PDF
    CUORE is a proposed tightly packed array of 1000 TeO2 bolometers, each being a cube 5 cm on a side with a mass of 760 g. The array consists of 25 vertical towers, arranged in a square of 5 towers by 5 towers, each containing 10 layers of 4 crystals. The design of the detector is optimized for ultralow-background searches: for neutrinoless double beta decay of 130Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals 3x3x6 cm3 of 340 g has been completed, and a single CUORE tower is being constructed as a smaller scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.Comment: 39 pages, 12 figures, submitted to NI

    A New Framework for Music Education Knowledge and Skill

    Get PDF
    This study investigates perceptions of secondary school band and orchestra teachers regarding the relative importance of knowledge and skill categories to professional success, using a framework modeled after Schulman (1986, 1987). Band and orchestra teachers in secondary schools (N = 214) complete an anonymous, online survey ranking the relative importance of various knowledge and skill categories. Participants rank pedagogical content knowledge, content knowledge, and general pedagogical knowledge highest. There are no significant differences in the rankings of the categories among various subgroups at the p < .05 level. Results confirm the applicability of Schulman's model to music education. This framework has implications for undergraduate, graduate, and continuing professional education. Analysis of categories' interaction provides insight into effective classroom instruction.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Is symmetry identity?

    Full text link
    Wigner found unreasonable the "effectiveness of mathematics in the natural sciences". But if the mathematics we use to describe nature is simply a coded expression of our experience then its effectiveness is quite reasonable. Its effectiveness is built into its design. We consider group theory, the logic of symmetry. We examine the premise that symmetry is identity; that group theory encodes our experience of identification. To decide whether group theory describes the world in such an elemental way we catalogue the detailed correspondence between elements of the physical world and elements of the formalism. Providing an unequivocal match between concept and mathematical statement completes the case. It makes effectiveness appear reasonable. The case that symmetry is identity is a strong one but it is not complete. The further validation required suggests that unexpected entities might be describable by the irreducible representations of group theory

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore