700 research outputs found

    Formation of the seed black holes: a role of quark nuggets?

    Full text link
    Strange quark nuggets (SQNs) could be the relics of the cosmological QCD phase transition, and they could very likely be the candidate of cold quark matter if survived the cooling of the later Universe, although the formation and evolution of these SQNs depend on the physical state of the hot QGP (quark-gluon plasma) phase and the state of cold quark matter. We reconsider the possibility of SQNs as cold dark matter, and find that the formation of black holes in primordial halos could be significantly different from the standard scenario. In a primordial halo, the collision between gas and SQNs could be frequent enough, and thus the viscosity acting on each SQN would decrease its angular momentum and make it to sink into the center of the halo, as well as heat the gas. The SQNs with baryon numbers less than 103510^{35} could assemble in the center of the halo before the formation of primordial stars. A black hole could form by merger of these SQNs, and then its mass could quickly become about 103 M10^3\ M_\odot or higher, by accreting the surrounding SQNs or gas. The black holes formed in this way could be the seeds for the supermassive black holes at redshift as high as z6z\sim 6.Comment: 15 page

    Determining the Higgs Boson Self Coupling at Hadron Colliders

    Get PDF
    Inclusive Standard Model Higgs boson pair production at hadron colliders has the capability to determine the Higgs boson self-coupling, lambda. We present a detailed analysis of the gg\to HH\to (W^+W^-)(W^+W^-)\to (jjl^\pm\nu)(jj{l'}^\pm\nu) and gg\to HH\to (W^+W^-)(W^+W^-)\to (jjl^\pm\nu)({l'}^\pm\nu {l''}^\mp\nu) (l, {l'}, {l''}=e, \mu) signal channels, and the relevant background processes, for the CERN Large Hadron Collider, and a future Very Large Hadron Collider operating at a center-of-mass energy of 200 TeV. We also derive quantitative sensitivity limits for lambda. We find that it should be possible at the LHC with design luminosity to establish that the Standard Model Higgs boson has a non-zero self-coupling and that lambda / lambda_{SM} can be restricted to a range of 0-3.8 at 95% confidence level (CL) if its mass is between 150 and 200 GeV. At a 200 TeV collider with an integrated luminosity of 300 fb^{-1}, lambda can be determined with an accuracy of 8 - 25% at 95% CL in the same mass range.Comment: 28 pages, Revtex3, 9 figures, 3 table

    Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis

    Full text link
    We investigate inclusive Standard Model Higgs boson pair production at lepton and hadron colliders for Higgs boson masses in the range 120 GeV < m_H < 200 GeV. For m_H < 140 GeV we find that hadron colliders have a very limited capability to determine the Higgs boson self-coupling, \lambda, due to an overwhelming background. We also find that, in this mass range, supersymmetric Higgs boson pairs may be observable at the LHC, but a measurement of the self coupling will not be possible. For m_H > 140 GeV we examine ZHH and HH nu bar-nu production at a future e+e- linear collider with center of mass energy in the range of sqrt{s}=0.5 - 1 TeV, and find that this is likely to be equally difficult. Combining our results with those of previous literature, which has demonstrated the capability of hadron and lepton machines to determine \lambda in either the high or the low mass regions, we establish a very strong complementarity of these machines.Comment: Revtex, 25 pages, 2 tables, 10 figure

    Search for the decay K+ to pi+ gamma gamma in the pi+ momentum region P>213 MeV/c

    Full text link
    We have searched for the K+ to pi+ gamma gamma decay in the kinematic region with pi+ momentum close to the end point. No events were observed, and the 90% confidence-level upper limit on the partial branching ratio was obtained, B(K+ to pi+ gamma gamma, P>213 MeV/c) < 8.3 x 10-9 under the assumption of chiral perturbation theory including next-to-leading order ``unitarity'' corrections. The same data were used to determine an upper limit on the K+ to pi+ gamma branching ratio of 2.3 x 10-9 at the 90% confidence level.Comment: 15 pages, 3 figures; no change in the results, accepted for publication in Physics Letters

    Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV

    Full text link
    We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected chi2 values for NNPD

    Measurement of the ratios of the Z/G* + >= n jet production cross sections to the total inclusive Z/G* cross section in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 0.4 fb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.Comment: 7 pages, 2 figures, slightly modified, submitted to Phys. Lett.

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore