153 research outputs found

    Reelin Mobilizes a VAMP7-Dependent Synaptic Vesicle Pool and Selectively Augments Spontaneous Neurotransmission

    Get PDF
    SummaryReelin is a glycoprotein that is critical for proper layering of neocortex during development as well as dynamic regulation of glutamatergic postsynaptic signaling in mature synapses. Here, we show that Reelin also acts presynaptically, resulting in robust rapid enhancement of spontaneous neurotransmitter release without affecting properties of evoked neurotransmission. This effect of Reelin requires a modest but significant increase in presynaptic Ca2+ initiated via ApoER2 signaling. The specificity of Reelin action on spontaneous neurotransmitter release is encoded at the level of vesicular SNARE machinery as it requires VAMP7 and SNAP-25 but not synaptobrevin2, VAMP4, or vti1a. These results uncover a presynaptic regulatory pathway that utilizes the heterogeneity of synaptic vesicle-associated SNAREs and selectively augments action potential-independent neurotransmission

    Leptin Replacement Improves Cognitive Development

    Get PDF
    Leptin changes brain structure, neuron excitability and synaptic plasticity. It also regulates the development and function of feeding circuits. However, the effects of leptin on neurocognitive development are unknown.To evaluate the effect of leptin on neurocognitive development.A 5-year-old boy with a nonconservative missense leptin gene mutation (Cys-to-Thr in codon 105) was treated with recombinant methionyl human leptin (r-metHuLeptin) at physiologic replacement doses of 0.03 mg/kg/day. Cognitive development was assessed using the Differential Ability Scales (DAS), a measure of general verbal and nonverbal functioning; and selected subtests from the NEPSY, a measure of neuropsychological functioning in children.Prior to treatment, the patient was morbidly obese, hypertensive, dyslipidemic, and hyperinsulinemic. Baseline neurocognitive tests revealed slower than expected rates of development (developmental age lower than chronological age) in a majority of the areas assessed. After two years, substantial increases in the rates of development in most neurocognitive domains were apparent, with some skills at or exceeding expectations based on chronological age. We also observed marked weight loss and resolution of hypertension, dyslipidemia and hyperinsulinemia.We concluded that replacement with r-metHuLeptin is associated with weight loss and changes in rates of development in many neurocognitive domains, which lends support to the hypothesis that, in addition to its role in metabolism, leptin may have a cognitive enhancing role in the developing central nervous system.ClinicalTrials.gov NCT00659828

    CNS targets of adipokines

    Get PDF
    This is the author accepted manuscript. The final version is available from American Physiological Society via the DOI in this record.Our understanding of adipose tissue as an endocrine organ has been transformed over the last twenty years. During this time a number of adipocyte-derived factors or adipokines have been identified. This paper will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology. The reported CNS-mediated effects of adipokines are varied and include the regulation of energy homeostasis, autonomic nervous system activity, the reproductive axis, neurodevelopment, cardiovascular function, and cognition. Due to the wealth of information available and the diversity of their known functions, the archetypal adipokines leptin and adiponectin will be the focused on extensively. Other adipokines with established CNS actions will also be discussed. Due to the difficulties associated with studying CNS function on a molecular level in humans, the majority of our knowledge, and as such the studies described in this paper, comes from work in experimental animal models; however, where possible the relevant data from human studies are also highlighted

    Identification of Stk25 as a genetic modifier of Tau phosphorylation in Dab1-mutant mice.

    Get PDF
    Hyperphosphorylation of the microtubule binding protein Tau is a feature of a number of neurodegenerative diseases, including Alzheimer's disease. Tau is hyperphosphorylated in the hippocampus of dab1-null mice in a strain-dependent manner; however, it has not been clear if the Tau phosphorylation phenotype is a secondary effect of the morbidity of these mutants. The dab1 gene encodes a docking protein that is required for normal brain lamination and dendritogenesis as part of the Reelin signaling pathway. We show that dab1 gene inactivation after brain development leads to Tau hyperphosphorylation in anatomically normal mice. Genomic regions that regulate the phospho Tau phenotype in dab1 mutants have previously been identified. Using a microarray gene expression comparison between dab1-mutants from the high-phospho Tau expressing and low-phospho Tau expressing strains, we identified Stk25 as a differentially expressed modifier of dab1-mutant phenotypes. Stk25 knockdown reduces Tau phosphorylation in embryonic neurons. Furthermore, Stk25 regulates neuronal polarization and Golgi morphology in an antagonistic manner to Dab1. This work provides insights into the complex regulation of neuronal behavior during brain development and provides insights into the molecular cascades that regulate Tau phosphorylation

    Heart rate variability can be affected by gender, blood pressure, and insulin resistance Reply

    No full text
    Durakoglugil, Emre/0000-0001-5268-4262WOS: 000351850500019PubMed: 26065312[No abstract available

    Cannabinoid Receptor Activation In The Nucleus Tractus Solitaries Produces Baroreflex-Like Responses In The Rat

    Get PDF
    The effects of cannabinoids on the baroreflex have been investigated in the nucleus tractus solitarii (NTS). In urethane-anesthetized rats, microinjection of the cannabinoid (CB) receptor agonist WIN 55212-2 (100 mM) into the NTS produced a short lasting decrease in arterial pressure (from 95.2 ± 2.9 to 76.2 ± 1.5, n=5, P0.05) though it inhibited the agonist-induced responses. The non-NMDA receptor antagonist, DNQX (4 mM) microinjections antagonized the actions of CB agonist WIN 55212-2. Furthermore, sinoaortic denervation attenuated the responses to CB agonists suggesting an intact baroreflex arc is necessary to elicit CB-mediated effects. Neither WIN 55212-2 nor AM 281, altered baroreceptor reflex activation by bolus phenylephrine (25 microg//kg) injections. These data suggest that cannabinoid receptors in the NTS are not involved in the tonic regulation of the arterial pressure but may have a modulatory role in the baroreceptor reflex integration.PubMe
    • …
    corecore