1,139 research outputs found

    Foot function during gait and parental perceived outcome in older children with symptomatic club foot deformity

    Get PDF
    Aims To assess if older symptomatic children with club foot deformity differ in perceived disability and foot function during gait, depending on initial treatment with Ponseti or surgery, compared to a control group. Second aim was to investigate correlations between foot function during gait and perceived disability in this population. Methods In all, 73 children with idiopathic club foot were included: 31 children treated with the Ponseti method (mean age 8.3 years; 24 male; 20 bilaterally affected, 13 left and 18 right sides analyzed), and 42 treated with primary surgical correction (mean age 11.6 years; 28 male; 23 bilaterally affected, 18 left and 24 right sides analyzed). Foot function data was collected during walking gait and included Oxford Foot Model kinematics (Foot Profile Score and the range of movement and average position of each part of the foot) and plantar pressure (peak pressure in five areas of the foot). Oxford Ankle Foot Questionnaire, Disease Specific Index for club foot, Paediatric Quality of Life Inventory 4.0 were also collected. The gait data were compared between the two club foot groups and compared to control data. The gait data were also correlated with the data extracted from the questionnaires. Results Our findings suggest that symptomatic children with club foot deformity present with similar degrees of gait deviations and perceived disability regardless of whether they had previously been treated with the Ponseti Method or surgery. The presence of sagittal and coronal plane hindfoot deformity and coronal plane forefoot deformity were associated with higher levels of perceived disability, regardless of their initial treatment. Conclusion This is the first paper to compare outcomes between Ponseti and surgery in a symptomatic older club foot population seeking further treatment. It is also the first paper to correlate foot function during gait and perceived disability to establish a link between deformity and subjective outcomes.</p

    Alkaline air: changing perspectives on nitrogen and air pollution in an ammonia-rich world

    Get PDF
    Ammonia and ammonium have received less attention than other forms of air pollution, with limited progress in controlling emissions at UK, European and global scales. By contrast, these compounds have been of significant past interest to science and society, the recollection of which can inform future strategies. Sal ammoniac (nĆ«shādir, nao sha) is found to have been extremely valuable in long-distance trade (ca AD 600–1150) from Egypt and China, where 6–8 kg N could purchase a human life, while air pollution associated with nĆ«shādir collection was attributed to this nitrogen form. Ammonia was one of the keys to alchemy—seen as an early experimental mesocosm to understand the world—and later became of interest as ‘alkaline air’ within the eighteenth century development of pneumatic chemistry. The same economic, chemical and environmental properties are found to make ammonia and ammonium of huge relevance today. Successful control of acidifying SO2 and NOx emissions leaves atmospheric NH3 in excess in many areas, contributing to particulate matter (PM2.5) formation, while leading to a new significance of alkaline air, with adverse impacts on natural ecosystems. Investigations of epiphytic lichens and bog ecosystems show how the alkalinity effect of NH3 may explain its having three to five times the adverse effect of ammonium and nitrate, respectively. It is concluded that future air pollution policy should no longer neglect ammonia. Progress is likely to be mobilized by emphasizing the lost economic value of global N emissions ($200 billion yr−1), as part of developing the circular economy for sustainable nitrogen management

    Annihilation Rate of 2++2^{++} Charmonium and Bottomonium

    Get PDF
    Two-photon annihilation rates of 2+2^+ tensor charmonium and bottomonium up to third radial excited states are estimated in the relativistic Salpeter method. Full Salpeter equation for 2+2^+ tensor state is solved with a well defined relativistic wave function and we calculated the annihilation amplitude using the Mandelstam formalism. Our estimates of the decay widths are: Γ(χc2→2Îł)=501\Gamma(\chi_{c2} \to 2\gamma)=501 eV, Γ(χc2â€Č→2Îł)=534\Gamma(\chi'_{c2} \to 2\gamma)=534 eV, Γ(χb2→2Îł)=7.4\Gamma(\chi_{b2} \to 2\gamma)=7.4 eV and Γ(χb2â€Č→2Îł)=7.7\Gamma(\chi'_{b2} \to 2\gamma)=7.7 eV. We also give total decay widths of the lowest states estimated by the two-gluon decay rates, and the results are: Γtot(χc2)=2.64\Gamma_{tot}(\chi_{c2})=2.64 MeV, Γtot(χb2)=0.220\Gamma_{tot}(\chi_{b2})=0.220 MeV and Γtot(χb2â€Č)=0.248\Gamma_{tot}(\chi'_{b2})=0.248 MeV.Comment: 9 pages,1 figure, 3 table

    Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity

    Get PDF
    Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base

    Clinical and radiographic outcomes of the treatment of adolescent idiopathic scoliosis with segmental pedicle screws and combined local autograft and allograft bone for spinal fusion: a retrospective case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High morbidity has been reported with iliac crest bone graft harvesting; however, donor bone is typically necessary for posterior spinal fusion. Autograft bone combined with allograft may reduce the morbidity associated with iliac crest bone harvesting and improve the fusion rate. Our aim in this study was to determine the presence of complications, pseudarthrosis, non-union, and infection using combined <it>in situ </it>local autograft bone and freeze-dried cancellous allograft bone in patients undergoing posterior spinal fusion for the treatment of adolescent idiopathic scoliosis.</p> <p>Methods</p> <p>A combination of <it>in situ </it>local autograft bone and freeze-dried cancellous allograft blocks were used in 50 consecutive patients with adolescent idiopathic scoliosis treated by posterior fusion and Moss Miami pedicle screw instrumentation. Results were assessed clinically and radiographically and quality of life and functional outcome was evaluated by administration of a Chinese version of the SRS-22 survey.</p> <p>Results</p> <p>There were 41 female and 9 male patients included for analysis with an average age of 14.7 years (range, 12-17). All patients had a minimum follow-up of 18 months (range, 18 to 40 months). The average preoperative Cobb angle was 49.8° (range, 40° to 86°). The average number of levels fused was 9.8 (range, 6-15). Patients had a minimum postoperative follow-up of 18 months. At final follow-up, the average Cobb angle correction was 77.8% (range, 43.4 to 92.5%). There was no obvious loss in the correction, and the average loss of correction was 1.1° (range, 0° to 4°). There was no pseudarthrosis and no major complications.</p> <p>Conclusions</p> <p><it>In situ </it>autograft bone combined with allograft bone may be a promising method enhances spinal fusion in AIS treated with pedicle screw placement. By eliminating the need for iliac crest bone harvesting, significant morbidity may be avoided.</p

    MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors

    Get PDF
    Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798

    Comparative analysis between shape memory alloy-based correction and traditional correction technique in pedicle screws constructs for treating severe scoliosis

    Get PDF
    The three-dimensional correction of severe rigid scoliosis has been improved by segmental pedicle screw instrumentation. However, there can be significant difficulty related to the use of a rigid rod, especially in the apex region of severe scoliosis. This study is a retrospective matched cohort study to evaluate the advantages of Nitinol shape memory alloy (SMA) rod-based correction by comparing the clinical and radiographic results obtained from using a temporary SMA rod and those from a standard rod in the correction of severe scoliosis. From May 2004 to September 2006, patients with matched curve type, ages at surgery, operative methods and fusion levels in our institute and instrumented with either SMA rods (n = 14) or traditional correction techniques (n = 16) were reviewed. In SMA group, the SMA rods served as a temporary intraoperative tool for deformity correction and were replaced by standard rods. The blood loss at surgery averaged 778 ± 285 ml in the traditional group and 585 ± 188 ml in the SMA group (P < 0.05). Operative time averaged 284 ± 53 min in the SMA group and 324 ± 41 min in the traditional group (P < 0.05). In the SMA group, the preoperative major curve was 92.6° ± 13.7° with a flexibility of 25.5 ± 7.3% was corrected to 29.4° ± 5.7° demonstrating a 68.4% immediate postoperative correction. In the traditional group, the preoperative major curve was 88.6° ± 14.6° with a flexibility of 29.3 ± 6.6% was corrected to 37.2° ± 7.3° demonstrating a 57.8% immediate postoperative correction. There was a statistic difference between the SMA group and traditional group in correction rate of the major thoracic curve. In the SMA group, one case suffered from deep infection 2 months postoperatively. In the traditional group, 6 of 16 cases suffered pedicle screw pull out or loosening during placement of the standard rod at the apex vertebrae on the concave side. In three cases, the mono-axial pedicle screws near the apex were abandoned and in five cases replaced with poly-axial pedicle screws. This study shows that the temporary use of SMA rod may reduce the operative time, blood loss, while improve the correction of the coronal plane when compared with standard techniques

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore