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Two-photon annihilation rates of 2+ tensor charmonium and bottomonium up to third radial excited
states are estimated in the relativistic Salpeter method. Full Salpeter equation for 2+ tensor state is
solved with a well defined relativistic wave function and we calculated the annihilation amplitude using
the Mandelstam formalism. Our estimates of the decay widths are: Γ (χc2 → 2γ ) = 501 eV, Γ (χ ′

c2 →
2γ ) = 534 eV, Γ (χb2 → 2γ ) = 7.4 eV and Γ (χ ′

b2 → 2γ ) = 7.7 eV. We also give total decay widths of
the lowest states estimated by the two-gluon decay rates, and the results are: Γtot(χc2) = 2.64 MeV,
Γtot(χb2) = 0.220 MeV and Γtot(χ

′
b2) = 0.248 MeV.

© 2009 Elsevier B.V. Open access under CC BY license.
1. Introduction

Recently, the radiative annihilation physics of χc0, χb0 (0++),
χc2 and χb2 (2++) become hot topics [1–11], because the annihi-
lation amplitudes are related to the behavior of the wave functions,
so the annihilation rates are helpful to understand the formalism
of inter-quark interactions, and can be a sensitive test of the po-
tential model [12].

In previous Letter [13], two-photon and two-gluon annihilation
rates of 0++ scalar cc̄ and bb̄ states are computed in the relativis-
tic Salpeter method, good agreement of our predictions with other
theoretical calculations and available experimental data is found. In
our calculation, we found the relativistic corrections are large and
cannot be ignored, and point out that all the calculations related
to a P -wave state, one have to use a relativistic method, a non-
relativistic method will cause a large error, even for a heavy state
[13,14]. In a non-relativistic calculation, the corresponding decay
width is related to the derivative of the non-relativistic P -wave
function at the origin, but in a full relativistic calculation, the rela-
tivistic corrections include not only relativistic kinematics but also
the relativistic inter-quark dynamics, the decay width is related to
the full behavior of P -wave function which can be seen in this
Letter or in Ref. [15].

In this Letter, we give relativistic calculation of 2++ tensor cc̄
and bb̄ states decaying into two photons using the instantaneous
Bethe–Salpeter method [16], which is a full relativistic Salpeter
method [17]. The case of tensor 2++ state is special, not like other
P -wave states, there are no decay constants in this state, and be-
cause there is the P –F mixing problem, it make the physics much
complicated.
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The reason of the exist of P –F mixing is that P -wave and F -
wave state have the same parity and charge conjugate parity, they
are all J P C = 2++ , one cannot distinguish them by the quantum
number. We have found a basic method to deal with this problem
[18], we begin from the quantum field theory, analyze the par-
ity and charge conjugation of bound state, and give a formula for
the wave function that is in a relativistic form with definite parity
and charge conjugation symmetry, then we solve the full Salpeter
equation, and obtain the corresponding state, and there are auto-
matically the mixing between P wave and F wave.

The Letter is organized as following, in Section 2, we give the
annihilation amplitude in Mandelstam formalism and the wave
function of the 2+ tensor state with a well defined relativistic
form. The two-photon decay width and full width of heavy 2++
quarkonium are formulated in Section 2, we show the numerical
results and give discussions in Section 3.

2. Theoretical details

According to the Mandelstam [19] formalism, the relativistic
transition amplitude of a quarkonium decaying into two photons
(see Fig. 1) can be written as:

T2γ = i
√

3(ieeq)
2
∫

d4q

(2π)4
tr

{
χ(q)

[
/ε2 S(p1 − k1)/ε1

+ /ε1 S(p1 − k2)/ε2
]}

, (1)

where k1, k2; ε1, ε2 are the momenta and polarization vectors of
photon 1 and photon 2; eq = 2

3 for charm quark and eq = 1
3 for

bottom quark; p1 and p2 are the momentum of constitute quark
1 and antiquark 2; χ(q) is the Bethe–Salpeter wave function of
the corresponding meson with the total momentum P and relative
momentum q, related by
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Fig. 1. Two-photon annihilation diagrams of the quarkonium.
p1 = α1 P + q,α1 ≡ m1

m1 + m2
,

p2 = α2 P − q,α2 ≡ m2

m1 + m2
,

where m1 = m2 is the constitute quark mass of charm or bottom.
Since p10 + p20 = M , the approximation p10 = p20 = M

2 is a
good choice for the equal mass system [7,20,21]. Having this ap-
proximation, we can perform the integration over q0 to reduce the
expression, with the notation of Salpeter wave function Ψ (�q) =∫ dq0

2π χ(q), to

T2γ = √
3(eeq)

2
∫

d�q
(2π)3

tr

{
Ψ (�q)

[
/ε2

1

/p1 − /k1 − m1
/ε1

+ /ε1
1

/p1 − /k2 − m1
/ε2

]}
. (2)

The general form for the relativistic wave function of tensor
J P = 2+ state (or J P C = 2++ for equal mass system) can be writ-
ten as 16 terms constructed by momentum P , q and Dirac ma-
trix γ , because of the approximation of instantaneous, 8 terms
with P ·q become zero, the relativistic Salpeter wave function Ψ (�q)

for 2+ state can be written as:

Ψ2+ (�q) = εμνqν⊥
{

qμ
⊥
[

f1(�q) + /P

M
f2(�q) + /q⊥

M
f3(�q) + /P/q⊥

M2
f4(�q)

]

+ γ μ
[
M f5(�q) + /P f6(�q) + /q⊥ f7(�q)

]

+ i

M
f8(�q)εμαβγ Pαq⊥βγγ γ5

}
, (3)

where the εμν is the polarization tensor of the 2+ state, q⊥ =
(0, �q). But these 8 terms wave functions f i are not indepen-
dent, there are the further constraint from Salpeter equation [17]:
Ψ +−

2+ (�q) = Ψ −+
2+ (�q) = 0, which give the constraints on the compo-

nents of the wave function, so we get the relations

f1(�q) = [q2⊥ f3(�q) + M2 f5(�q)](ω1 + ω2) − M2 f5(�q)(ω1 − ω2)

M(m1ω2 + m2ω1)
,

f2(�q) = [q2⊥ f4(�q) − M2 f6(�q)](ω1 − ω2)

M(m1ω2 + m2ω1)
,

f7(�q) = f5(�q)M(ω1 − ω2)

m1ω2 + m2ω1
,

f8(�q) = f6(�q)M(ω1 + ω2)

m1ω2 + m2ω1
. (4)

Only four independent wave functions f3(�q), f4(�q), f5(�q) and
f6(�q) been left, one can check in Eq. (3), all the terms except
the two terms with f2 and f7 are charge conjugate parity posi-
tive, but f2 and f7 terms have negative charge conjugate parity,
after we use the constraint relations, for equal mass system, the
terms with f2 and f7 become zero, then the whole wave func-
tion have positive charge conjugate parity, that is 2++ state. These
wave functions and the bound state mass M can be obtained by
solving the full Salpeter equation with the constituent quark mass
as input, and we will not show the details of how to solve it, we
only show our result in next section.

These four independent wave functions fulfill the normalization
condition:
∫
d�q

(2π)3

16ω1ω2�q2

15(m1ω2 + m2ω1)

×
{

f5 f6M2
[

5 + (m1 + m2)(m2ω1 − m1ω2)

ω1ω2(ω1 + ω2)

]

+ f4 f5�q2
[

2 + (m1 + m2)(m2ω1 − m1ω2)

ω1ω2(ω1 + ω2)

]

−2�q2 f3

(
f4

�q2

M2
+ f6

)}
= 2M. (5)

With the full Salpeter wave function, the two photon decay am-
plitude can be written as:

T2γ = 4
√

3e2e2
qεμν

∫
d�q

(2π)3

{
1

x1 − |�q|M cos θ

×
[

f5M
(
kμ

1 qν⊥ε1 · ε2 + ε
μ
1 qν⊥ε2 · q⊥ + ε

μ
2 qν⊥ε1 · q⊥

)

+ qμ
⊥qν⊥ f3

M
(ε1 · ε2q⊥ · k1 + 2ε1 · q⊥ε2 · q⊥)

]

+ 1

x1 + |�q|M cos θ

[
f5M

(
kμ

2 qν⊥ε1 · ε2 + ε
μ
1 qν⊥ε2 · q⊥

+ ε
μ
2 qν⊥ε1 · q⊥

) + qμ
⊥qν⊥ f3

M
(ε1 · ε2q⊥ · k2 + 2ε1 · q⊥ε2 · q⊥)

]}

(6)

where x1 = M2

4 + �q2 + m2
1, and θ is the angle between the mo-

mentum �q and �k1. Finally the decay width with first order QCD
correction [22] can be written as:

Γ2γ = 1

2! · 5 · 16π M

∑
|T2γ |2 ·

(
1 − 16αs

3π

)
. (7)

Until now, only the total decay width of χc2(1P ) is available,
we can estimate the full decay width of OZI-forbidden states us-
ing the two gluon decay width, and the two gluon decay width
of quarkonium can be easily obtained from the two photon decay
width with a simple replacement. For the charmnium states, only
the ground state χc2(1P ) is OZI-forbidden, we have:

Γtot(χc2) ∼= Γ2g(χc2) = Γ2γ (χc2)
9α2

s (mc)

8α2

1 − 2.2αs(mc)
π

1 − 16αs(mc)
3π

. (8)

For 2++ bottomonium states, according to our estimate of mass
spectra, there are two states which are below the threshold of B B̄ ,
and we can predict their full decay widths using their two gluon
decay widths. For χb2(1P ), we have:

Γtot(χb2) ∼= Γ2g(χb2) = Γ2γ (χb2)
18α2

s (mb)

α2

1 − 0.1αs(mb)
π

1 − 16αs(mb)
3π

, (9)

and for the first radial excited state χ ′
b2(2P ), we have:

Γtot(χ
′
b2)

∼= Γ2g(χ
′
b2) = Γ2γ (χ ′

b2)
18α2

s (mb)

α2

1 + αs(mb)
π

1 − 16αs(mb)
3π

, (10)

where α = e2

4π , and the QCD corrections are summarized in
Ref. [22].
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3. Numerical results and discussions

We will not show the details of Solving the full Salpeter equa-
tion, only give the final results, interested readers can find the
detail technique in Ref. [23].

When solving the full Salpeter equation, we choose a phe-
nomenological Cornell potential,

V (�q) = V s(�q) + γ0 ⊗ γ 0 V v(�q),

V s(�q) = −
(

λ

α
+ V 0

)
δ3(�q) + λ

π2

1

(�q2 + α2)2
,

V v(�q) = − 2

3π2

αs(�q)

(�q2 + α2)
,

and the coupling constant αs(�q) is running:

αs(�q) = 12π

25

1

log(a + �q2

Λ2
QCD

)
.

Here the constants λ, α, a, V 0 and ΛQCD are the parameters that
characterize the potential. We found the following best-fit values
of input parameters which were obtained by fitting the mass spec-
tra for 2++ χc2: a = e = 2.7183, α = 0.06 GeV, V 0 = −0.401 GeV,
λ = 0.2 GeV2, ΛQCD = 0.26 GeV and mc = 1.7553 GeV. With this
parameter set, we solve the full Salpeter equation and obtain the
mass spectra shown in Table 1. To give the numerical value, we
need to fix the value of the renormalization scale μ in αs(μ). In
the case of charmonium, we choose the charm quark mass mc as
the energy scale and obtain the coupling constant αs(mc) = 0.36
[23].

Since the wave function Eq. (3) is general wave function for 2+
state, and either 3 P2 and 3 F2 can be 2+ state, so the obtained

Table 1
Two-photon decay width and total width of P -wave 2++ charmonium states, where
the data of χc2(1P ) is come from PDG [25], and data of χ ′

c2(2P ) is come from
Ref. [26].

Ex mass (MeV) Th mass (MeV) Γ2γ (eV)

χc2(1P ) 3556.20 3556.6 501
χ ′

c2(2P ) 3931 3967.0 534
χ ′

c2(1F ) 4040.5 92.4
χ ′′

c2(3P ) 4264.6 509
χ ′′

c2(2F ) 4314.3 54.1
χ ′′′

c2(4P ) 4498.7 475

Table 2
Two-photon decay width and total width of P -wave 2++ bottomonium states.

Ex mass (MeV) Th mass (MeV) Γ2γ (eV)

χb2(1P ) 9912.21 9912.2 7.43
χ ′

b2(2P ) 10 268.65 10 283 7.69
χ ′

b2(1F ) 10 364 1.76
χ ′′

b2(3P ) 10 561 7.19
χ ′′

b2(2F ) 10 616 1.43
χ ′′′

b2(4P ) 10 786 6.60
states of χ ′
c2(1F ) and χ ′′

c2(2F ) are not pure F wave, they are P –F
mixing state, but a F wave dominate state, and χ ′

b2(1F ), χ ′′
b2(2F )

in Table 2 are also P –F mixing, but F wave dominate state, we
will discuss the detail of mixing in other paper [24].

Our prediction of the mass for χ ′
c2(2P ) is 3967.0 MeV, which

is a little larger than the first observation by BELLE Collaboration,
their data is 3931 MeV. And our prediction of the first F wave
dominate state, we list as χ ′

c2(1F ), whose mass is 4040.5 MeV,
and the second one, χ ′′

c2(2F ), whose mass is 4314.3 MeV.
With the obtained wave function and Eq. (3), we calculate the

two-photon decay width of cc̄ 2++ states, the results are also
shown in Table 1. Not similar to the S wave case, where the two
photon decay width of ground state Γ (ηc → 2γ ) is much larger
then the first radial excited state Γ (η′

c → 2γ ), almost twice [15],
the ground state decay width is a little smaller than the first radial
excited state, and from the table we obtain the conclusion that the
decay widths with successive radial excitation fall very slowly. The
decay width of the F wave dominate state, Γ (χ ′

c2(1F ) → 2γ ) =
92 eV and Γ (χ ′′

c2(2F ) → 2γ ) = 54 eV are much smaller than the
P wave dominate state.

For the case of bb̄, our best fitting parameters are V 0 =
−0.459 GeV, ΛQCD = 0.20 and mb = 5.13 GeV, other parameters
are same as in the case of cc̄. With this set of parameters, the cou-
pling constant at scale of bottom quark mass is αs(mb) = 0.232.
The corresponding mass spectra, two-photon decay widths are
shown in Table 2. Our mass prediction of χ ′

b2(2P ) is 10283 MeV,
a little higher than the data. And the two photon decay widths
are much smaller than the case of charmonium, their value is only
about several eV.

Our predictions of the total decay width for the ground state:

Γtot(χc2) ∼= Γ2g(χc2) = 2.64 MeV,

is little larger then the PDG data Γtot(χc2) = 2.03 ± 0.12 MeV. For
2++ bottomonium states, we have no data in hand, our theoretical
predictions are:

Γtot(χb2) ∼= Γ2g(χb2) = 0.220 MeV

and

Γtot(χ
′
b2)

∼= Γ2g(χ
′
b2) = 0.248 MeV.

We compare our predictions with recent other theoretical rela-
tivistic calculations and experimental results in Table 3. Except the
total decay width of Γtot(χc2), all the values of listed in the table
consist with each other.

In summary, by solving the relativistic full Salpeter equation
with a well defined form of wave function, we estimate two-
photon decay rates: Γ (χc2 → 2γ ) = 501 eV, Γ (χ ′

c2 → 2γ ) =
534 eV, Γ (χb2 → 2γ ) = 7.4 eV and Γ (χ ′

b2 → 2γ ) = 7.7 eV,
and the total decay widths: Γtot(χc2) = 2.64 MeV, Γtot(χb2) =
0.220 MeV and Γtot(χ

′ ) = 0.248 MeV.
b2
Table 3
Recent theoretical and experimental results of two-photon decay width and total width.

Γ
χc2

2γ (keV) Γ
χc2

tot (MeV) Γ
χ ′

c2
2γ (keV) Γ

χb2
2γ (eV) Γ

χb2
tot (MeV) Γ

χ ′
b2

2γ (eV)

Ours 0.50 2.64 0.53 7.4 0.22 7.7
Gupta [6] 0.57 1.20 8 0.22
Ebert [8] 0.50 0.52 8 6
Münz [9] 0.44 ± 0.14 0.48 ± 0.16 5.6 ± 0.6 6.8 ± 1.0
CLEO [27] 0.53±0.15±0.06±0.22
CLEO [28] 0.56±0.06±0.05±0.04
CLEO [29] 0.60 ± 0.06 ± 0.06
PDG [25] 0.493 2.03 ± 0.12
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