4 research outputs found

    Reinvestigating the status of malaria parasite (Plasmodium sp.) in Indian non-human primates

    No full text
    Many human parasites and pathogens have closely related counterparts among non-human primates. For example, non-human primates harbour several species of malaria causing parasites of the genus Plasmodium. Studies suggest that for a better understanding of the origin and evolution of human malaria parasites it is important to know the diversity and evolutionary relationships of these parasites in non-human primates. Much work has been undertaken on malaria parasites in wild great Apes of Africa as well as wild monkeys of Southeast Asia however studies are lacking from South Asia, particularly India. India is one of the major malaria prone regions in the world and exhibits high primate diversity which in turn provides ideal setting for both zoonoses and anthropozoonoses. In this study we report the molecular data for malaria parasites from wild populations of Indian non-human primates. We surveyed 349 fecal samples from five different Indian non-human primates, while 94 blood and tissue samples from one of the Indian non-human primate species (Macaca radiata) and one blood sample from M. mulatta. Our results confirm the presence of P. fragile, P. inui and P. cynomolgi in Macaca radiata. Additionally, we report for the first time the presence of human malarial parasite, P. falciparum, in M. mulatta and M. radiata. Additionally, our results indicate that M. radiata does not exhibit population structure probably due to human mediated translocation of problem monkeys. Human mediated transport of macaques adds an additional level of complexity to tacking malaria in human. This issue has implications for both the spread of primate as well as human specific malarias

    Response of cardiac pulse parameters in humans at various inclinations via 360° rotating platform for simulated microgravity perspective

    No full text
    Abstract On the Earth, the human body is designed and adapted to function under uniform gravitational acceleration. However, exposure to microgravity or weightlessness as experienced by astronauts in space causes significant alterations in the functioning of the human cardiovascular system. Due to limitations in using real microgravity platforms, researchers opted for various ground-based microgravity analogs including head-down tilt (HDT) at fixed inclination. However, in the present study, an investigation of response of various cardiac parameters and their circulatory adaptation in 18 healthy male subjects was undertaken by using an indigenously developed 360° rotating platform. Cardiac pulse was recorded from 0° to 360° in steps of 30° inclination using piezoelectric pulse sensor (MLT1010) and associated cardiac parameters were analyzed. The results showed significant changes in the pulse shape while an interesting oscillating pattern was observed in associated cardiac parameters when rotated from 0° to 360°. The response of cardiac parameters became normal after returning to supine posture indicating the ability of the cardiovascular system to reversibly adapt to the postural changes. The observed changes in cardiac parameters at an inclination of 270°, in particular, were found to be comparable with spaceflight studies. Based on the obtained results and the proposed extended version of fluid redistribution mechanism, we herewith hypothesize that the rotation of a subject to head down tilt inclination (270°) along with other inclinations could represent a better microgravity analog for understanding the cumulative cardiac response of astronauts in space, particularly for short duration space missions

    Ethnomedicinal plants used to treat skin diseases by Tharu community of district Udham Singh Nagar, Uttarakhand, India

    No full text
    corecore