147 research outputs found

    Clinicopathological characteristics and prognostic analysis of Lauren classification in gastric adenocarcinoma in China

    Get PDF
    BACKGROUND: According to the Lauren classification, gastric adenocarcinomas are divided into diffuse and intestinal types. The causative attribution explaining the dismal prognosis of diffuse-type remains unknown. METHODS: We examined the archive of 1000 patients with gastric adenocarcinomas who received radical gastrectomy in our center and assessed the effect of the Lauren classification on survival in a multivariate approach. Moreover we compared the variation of clinical features between the diffuse-type and intestinal-type and explored the contributing factors for the prognostic difference. RESULTS: There were 805 resectable patients for the final analysis. Diffuse-type comprised of 48.7% in the gastric carcinoma in our group and showed poorer prognosis than intestinal-type (P=0.013). Multivariate analysis revealed that independent prognostic factors for gastric carcinoma patients were T stage (P<0.001), N stage (P<0.001) tumor size (P<0.001) and Lauren classification (P=0.003). For the clinical features, diffuse-type was significantly associated with younger age (p<0.001), female preponderance (p <0.001), distal location (P<0.001), advanced pT (p < 0.001), advanced pN (p < 0.001) and advanced TNM stage (p = 0.027). CONCLUSIONS: Diffuse type adenocarcinoma carries a worse prognosis that may be partially explained by the tendency of this subtype to present at more advanced T and N stage. However, Lauren classification has prognostic significance that is independent of T and N stage as well as other prognostic variables based on the multivariate cox analysis

    Dynamics for a complex-valued heat equation with an inverse nonlinearity

    Get PDF
    [[abstract]]We study the Cauchy problem for a parabolic system which is derived from a complex-valued heat equation with an inverse nonlinearity. First, we provide some criteria for the global existence of solutions. Then we consider the case when the initial data are asymptotically constants and obtain that, depending on the asymptotic limits, the solution quenches at space infinity or exists globally in time.[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[countrycodes]]US

    Scaling and memory in the non-poisson process of limit order cancelation

    Full text link
    The order submission and cancelation processes are two crucial aspects in the price formation of stocks traded in order-driven markets. We investigate the dynamics of order cancelation by studying the statistical properties of inter-cancelation durations defined as the waiting times between consecutive order cancelations of 22 liquid stocks traded on the Shenzhen Stock Exchange of China in year 2003. Three types of cancelations are considered including cancelation of any limit orders, of buy limit orders and of sell limit orders. We find that the distributions of the inter-cancelation durations of individual stocks can be well modeled by Weibulls for each type of cancelation and the distributions of rescaled durations of each type of cancelations exhibit a scaling behavior for different stocks. Complex intraday patterns are also unveiled in the inter-cancelation durations. The detrended fluctuation analysis (DFA) and the multifractal DFA show that the inter-cancelation durations possess long-term memory and multifractal nature, which are not influenced by the intraday patterns. No clear crossover phenomenon is observed in the detrended fluctuation functions with respect to the time scale. These findings indicate that the cancelation of limit orders is a non-Poisson process, which has potential worth in the construction of order-driven market models.Comment: 13 Latex pages, 6 figure

    Downregulation of Fat Mass and Obesity Associated (FTO) Promotes the Progression of Intrahepatic Cholangiocarcinoma

    Get PDF
    Intrahepatic cholangiocarcinoma (ICC) ranks as the second most malignant type of primary liver cancer with a high degree of incidence and a very poor prognosis. Fat mass and obesity-associated protein (FTO) functions as an eraser of the RNA m6A modification, but its roles in ICC tumorigenesis and development remain unknown. We showed here that the protein level of FTO was downregulated in clinical ICC samples and cell lines and that FTO expression was inversely correlated with the expression of CA19-9 and micro-vessel density (MVD). A Kaplan-Meier survival analysis showed that a low expression of FTO predicted poor prognosis in ICC. in vitro, decreased endogenous expression of FTO obviously reduced apoptosis of ICC cells. Moreover, FTO suppressed the anchorage-independent growth and mobility of ICC cells. Through mining the database, FTO was found to regulate the integrin signaling pathway, inflammation signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway, angiogenesis, and the pyrimidine metabolism pathway. RNA decay assay showed that oncogene TEAD2 mRNA stability was impaired by FTO. In addition, the overexpression of FTO suppressed tumor growth in vivo. In conclusion, our study demonstrated the critical roles of FTO in ICC

    Prognostic relevance of Centromere protein H expression in esophageal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many kinetochore proteins have been shown to be associated with human cancers. The aim of the present study was to clarify the expression of Centromere protein H (CENP-H), one of the fundamental components of the human active kinetochore, in esophageal carcinoma and its correlation with clinicopathological features.</p> <p>Methods</p> <p>We examined the expression of CENP-H in immortalized esophageal epithelial cells as well as in esophageal carcinoma cells, and in 12 cases of esophageal carcinoma tissues and the paired normal esophageal tissues by RT-PCR and Western blot analysis. In addition, we analyzed CENP-H protein expression in 177 clinicopathologically characterized esophageal carcinoma cases by immunohistochemistry. Statistical analyses were applied to test for prognostic and diagnostic associations.</p> <p>Results</p> <p>The level of CENP-H mRNA and protein were higher in the immortalized cells, cancer cell lines and most cancer tissues than in normal control tissues. Immunohistochemistry showed that CENP-H was expressed in 127 of 171 ESCC cases (74.3%) and in 3 of 6 esophageal adenocarcinoma cases (50%). Statistical analysis of ESCC cases showed that there was a significant difference of CENP-H expression in patients categorized according to gender (<it>P </it>= 0.013), stage (<it>P </it>= 0.023) and T classification (<it>P </it>= 0.019). Patients with lower CENP-H expression had longer overall survival time than those with higher CENP-H expression. Multivariate analysis suggested that CENP-H expression was an independent prognostic marker for esophageal carcinoma patients. A prognostic value of CENP-H was also found in the subgroup of T3~T4 and N0 tumor classification.</p> <p>Conclusion</p> <p>Our results suggest that CENP-H protein is a valuable marker of esophageal carcinoma progression. CENP-H might be used as a valuable prognostic marker for esophageal carcinoma patients.</p

    Ni-based bimetallic heterogeneous catalysts for energy and environmental applications

    Get PDF
    Bimetallic catalysts have attracted extensive attention for a wide range of applications in energy production and environmental remediation due to their tunable chemical/physical properties. These properties are mainly governed by a number of parameters such as compositions of the bimetallic systems, their preparation method, and their morphostructure. In this regard, numerous efforts have been made to develop “designer” bimetallic catalysts with specific nanostructures and surface properties as a result of recent advances in the area of materials chemistry. The present review highlights a detailed overview of the development of nickel-based bimetallic catalysts for energy and environmental applications. Starting from a materials science perspective in order to obtain controlled morphologies and surface properties, with a focus on the fundamental understanding of these bimetallic systems to make a correlation with their catalytic behaviors, a detailed account is provided on the utilization of these systems in the catalytic reactions related to energy production and environmental remediation. We include the entire library of nickel-based bimetallic catalysts for both chemical and electrochemical processes such as catalytic reforming, dehydrogenation, hydrogenation, electrocatalysis and many other reactions

    Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    Get PDF
    Citation: Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. Plos Pathogens, 12(1), 28. doi:10.1371/journal.ppat.1005404Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems

    Universal screening for Lynch syndrome in a large consecutive cohort of Chinese colorectal cancer patients: High prevalence and unique molecular features

    Get PDF
    The prevalence of Lynch syndrome (LS) varies significantly in different populations, suggesting that ethnic features might play an important role. We enrolled 3330 consecutive Chinese patients who had surgical resection for newly diagnosed colorectal cancer. Universal screening for LS was implemented, including immunohistochemistry for mismatch repair (MMR) proteins, BRAFV600E mutation test and germline sequencing. Among the 3250 eligible patients, MMR protein deficiency (dMMR) was detected in 330 (10.2%) patients. Ninety‐three patients (2.9%) were diagnosed with LS. Nine (9.7%) patients with LS fulfilled Amsterdam criteria II and 76 (81.7%) met the revised Bethesda guidelines. Only 15 (9.7%) patients with absence of MLH1 on IHC had BRAFV600E mutation. One third (33/99) of the MMR gene mutations have not been reported previously. The age of onset indicates risk of LS in patients with dMMR tumors. For patients older than 65 years, only 2 patients (5.7%) fulfilling revised Bethesda guidelines were diagnosed with LS. Selective sequencing of all cases with dMMR diagnosed at or below age 65 years and only of those dMMR cases older than 65 years who fulfill revised Bethesda guidelines results in 8.2% fewer cases requiring germline testing without missing any LS diagnoses. While the prevalence of LS in Chinese patients is similar to that of Western populations, the spectrum of constitutional mutations and frequency of BRAFV600E mutation is different. Patients older than 65 years who do not meet the revised Bethesda guidelines have a low risk of LS, suggesting germline sequencing might not be necessary in this population

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed
    corecore