201 research outputs found

    Preliminary assessment of bone histology in the extinct elephant bird <i>Aepyornis</i> (Aves, Palaeognathae) from Madagascar

    Get PDF
    International audienceAepyornis, a giant subfossil ratite from Madagascar, shows a well-preserved bone histology. Hindlimb bones exhibit an extensive histodiversity; the cortex is initially made of fibrolamellar, well-vascularized primary bone that modulates locally into plexiform or laminar patterns. Lines of arrested growth are generally weakly expressed. Haversian reconstruction can be complete. Perimedullar endosteal deposition is variable but can be extensive. The complex causality (phylogenetic, systematic, ontogenetic and functional… factors) involved in the production of the observed data is discussed.Aepyornis, ratite géant subfossile de Madagascar, montre une histologie osseuse bien préservée. Les os longs des pattes présentent une forte diversité histologique ; l’os primaire des corticales est initialement du type général fibrolamellaire, fortement vascularisé selon des patrons plexiformes ou laminaires. Les lignes d’arrêt de croissance sont généralement peu exprimées. Le remaniement haversien peut être complet. Le dépôt endostéal périmédullaire est variable, mais peut être très important. La causalité complexe (facteurs phylogénétiques, systématiques, ontogénétiques, fonctionnels…) pouvant rendre compte des structures observées est abordée

    Quantification of intraskeletal histovariability in Alligator mississippiensis and implications for vertebrate osteohistology

    Get PDF
    Bone microanalyses of extant vertebrates provide a necessary framework from which to form hypotheses regarding the growth and skeletochronology of extinct taxa. Here, we describe the bone microstructure and quantify the histovariability of appendicular elements and osteoderms from three juvenile American alligators (Alligator mississippiensis) to assess growth mark and tissue organization within and amongst individuals, with the intention of validating paleohistological interpretations. Results confirm previous observations that lamellar and parallel fibered tissue organization are typical of crocodylians, and also that crocodylians are capable of forming woven tissue for brief periods. Tissue organization and growth mark count varies across individual skeletal elements and reveal that the femur, tibia, and humerus had the highest annual apposition rates in each individual. Cyclical growth mark count also varies intraskeletally, but data suggest these inconsistencies are due to differing medullary cavity expansion rates. There was no appreciable difference in either diaphyseal circumference or cyclical growth mark circumferences between left and right element pairs from an individual if diaphyses were sampled from roughly the same location. The considerable intraskeletal data obtained here provide validation for long-held paleohistology assumptions, but because medullary expansion, cyclical growth mark formation, and variable intraskeletal growth rates are skeletal features found in tetrapod taxa living or extinct, the validations presented herein should be considered during any tetrapod bone microanalysis

    Rethinking the nature of fibrolamellar bone : An integrative biological revision of sauropod plexiform bone formation

    Get PDF
    We present novel findings on sauropod bone histology that cast doubt on general palaeohistological concepts concerning the true nature of woven bone in primary cortical bone and its role in the rapid growth and giant body sizes of sauropod dinosaurs. By preparing and investigating longitudinal thin sections of sauropod long bones, of which transverse thin sections were published previously, we found that the amount of woven bone in the primary complex has been largely overestimated. Using comparative cellular and light-extinction characteristics in the two section planes, we revealed that the majority of the bony lamina consists of longitudinally organized primary bone, whereas woven bone is usually represented only by a layer a few cells thin in the laminae. Previous arguments on sauropod biology, which have been based on the overestimated amount, misinterpreted formation process and misjudged role of woven bone in the plexiform bone formation of sauropod dinosaurs, are thereby rejected. To explain the observed pattern in fossil bones, we review the most recent advances in bone biology concerning bone formation processes at the cellular and tissue levels. Differentiation between static and dynamic osteogenesis (SO and DO) and the revealed characteristics of SO- versus DO-derived bone tissues shed light on several questions raised by our palaeohistological results and permit identification of these bone tissues in fossils with high confidence. By presenting the methods generally used for investigating fossil bones, we show that the major cause of overestimation of the amount of woven bone in previous palaeohistological studies is the almost exclusive usage of transverse sections. In these sections, cells and crystallites of the longitudinally organized primary bone are cut transversely, thus cells appear rounded and crystallites remain dark under crossed plane polarizers, thereby giving the false impression of woven bone. In order to avoid further confusion in palaeohistological studies, we introduce new osteohistological terms as well as revise widely used but incorrect terminology. To infer the role of woven bone in the bone formation of fast-growing tetrapods, we review some aspects of the interrelationships between the vascularity of bone tissues, basal metabolic rate, body size and growth rate. By putting our findings into the context of osteogenesis, we provide a new model for the diametrical limb bone growth of sauropods and present new implications for the evolution of fast growth in vertebrates. Since biomechanical studies of bone tissues suggest that predominant collagen fibre orientation (CFO) is controlled by endogenous, functional and perhaps phylogenetic factors, the relationship between CFO and bone growth rate as defined by Amprino's rule, which has been the basis for the biological interpretation of several osteohistological features, must be revised. Our findings draw attention to the urgent need for revising widely accepted basic concepts of palaeohistological studies, and for a more integrative approach to bone formation, biomechanics and bone microstructural features of extant and extinct vertebrates to infer life history traits of long extinct, iconic animals like dinosaurs. © 2013 Cambridge Philosophical Society

    First dinosaur from the Isle of Eigg (Valtos Sandstone Formation, Middle Jurassic) Scotland

    Get PDF
    Dinosaur body fossil material is rare in Scotland, previously known almost exclusively from the Great Estuarine Group on the Isle of Skye. We report the first unequivocal dinosaur fossil from the Isle of Eigg, belonging to a Bathonian (Middle Jurassic) taxon of uncertain affinity. The limb bone NMS G.2020.10.1 is incomplete, but through a combination of anatomical comparison and osteohistology, we determine it most likely represents a stegosaur fibula. The overall proportions and cross-sectional geometry are similar to the fibulae of thyreophorans. Examination of the bone microstructure reveals a high degree of remodelling and randomly distributed longitudinal canals in the remaining primary cortical bone. This contrasts with the histological signal expected of theropod or sauropod limb bones, but is consistent with previous studies of thyreophorans, specifically stegosaurs. Previous dinosaur material from Skye and broadly contemporaneous sites in England belongs to this group, including &lt;jats:italic&gt;Loricatosaurus&lt;/jats:italic&gt; and &lt;jats:italic&gt;Sarcolestes&lt;/jats:italic&gt; and a number of indeterminate stegosaur specimens. Theropods such as &lt;jats:italic&gt;Megalosaurus&lt;/jats:italic&gt; and sauropods such as &lt;jats:italic&gt;Cetiosaurus&lt;/jats:italic&gt; are also known from these localities. Although we find strong evidence for a stegosaur affinity, diagnostic features are not observed on NMS G.2020.10.1, preventing us from referring it to any known genera. The presence of this large-bodied stegosaur on Eigg adds a significant new datapoint for dinosaur distribution in the Middle Jurassic of Scotland

    Cancellous bone and theropod dinosaur locomotion. Part I—an examination of cancellous bone architecture in the hindlimb bones of theropods

    Get PDF
    This paper is the first of a three-part series that investigates the architecture of cancellous (‘spongy’) bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and has previously been used to infer locomotor biomechanics in extinct tetrapod vertebrates, especially primates. Despite great promise, cancellous bone architecture has remained little utilized for investigating locomotion in many other extinct vertebrate groups, such as dinosaurs. Documentation and quantification of architectural patterns across a whole bone, and across multiple bones, can provide much information on cancellous bone architectural patterns and variation across species. Additionally, this also lends itself to analysis of the musculoskeletal biomechanical factors involved in a direct, mechanistic fashion. On this premise, computed tomographic and image analysis techniques were used to describe and analyse the three-dimensional architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs for the first time. A comprehensive survey across many extant and extinct species is produced, identifying several patterns of similarity and contrast between groups. For instance, more stemward non-avian theropods (e.g. ceratosaurs and tyrannosaurids) exhibit cancellous bone architectures more comparable to that present in humans, whereas species more closely related to birds (e.g. paravians) exhibit architectural patterns bearing greater similarity to those of extant birds. Many of the observed patterns may be linked to particular aspects of locomotor biomechanics, such as the degree of hip or knee flexion during stance and gait. A further important observation is the abundance of markedly oblique trabeculae in the diaphyses of the femur and tibia of birds, which in large species produces spiralling patterns along the endosteal surface. Not only do these observations provide new insight into theropod anatomy and behaviour, they also provide the foundation for mechanistic testing of locomotor hypotheses via musculoskeletal biomechanical modelling

    Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While gross morphological changes in the skeleton between males and females are well know, differences between sexes in the histomorphology are less known. It is important to have knowledge on the bone structure of rabbits, as this is a widely used species in biomedical research. A study was performed to evaluate the association between sex and the compact bone morphology of the femoral diaphysis in juvenile rabbits.</p> <p>Methods</p> <p>Seventeen clinically healthy 2–3 month-old rabbits (9 females, 8 males) were included in the study. The rabbits were euthanized and the right femur was sampled for analysis. 70–80 microns thick bone sections of the femoral diaphysis were prepared using standard histological equipment. The qualitative histological characteristics were determined according to internationally accepted classification systems while the quantitative parameters were assessed using the software Scion Image. Areas, perimeters, minimum and maximum diameters of primary osteons' vascular canals, Haversian canals and secondary osteons were measured. Additionally, blood plasma concentrations of progesterone, corticosterone, IGF-I, testosterone and estradiol were analyzed.</p> <p>Results</p> <p>Qualitative histological characteristics were similar for both sexes. However, variations of certain quantitative histological characteristics were identified. Measured parameters of the primary osteons' vascular canals were higher in males than for females. On the other hand, females had significant higher values of secondary osteons parameters. Differences in Haversian canals parameters were only significant for minimum diameter.</p> <p>Conclusion</p> <p>The study demonstrated that quantitative histological characteristics of compact bone tissue of the femoral diaphysis in juvenile rabbits were sex dependent. The variations may be associated with different growth and modeling of the femur through influence by sex-specific steroids, mechanical loads, genetic factors and a multitude of other sources. The results can be applied in experimental studies focusing on comparison of the skeletal biology of the sexes.</p

    Effects of dietary supplementation of nickel and nickel-zinc on femoral bone structure in rabbits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nickel (Ni) and zinc (Zn) are trace elements present at low concentrations in agroecosystems. Nickel, however, may have toxic effects on living organisms and is often considered as a contaminant. This study reports the effect of peroral administrated Ni or a combination of Ni and Zn on femoral bone structure in rabbits.</p> <p>Methods</p> <p>One month-old female rabbits were divided into three groups of five animals each. Group 1 rabbits were fed a granular feed mixture with addition of 35 g NiCl<sub>2 </sub>per 100 kg of mixture for 90 days. In group 2, animals were fed a mixture containing 35 g NiCl<sub>2 </sub>and 30 g ZnCl<sub>2 </sub>per 100 kg of mixture. Group 3 without administration of additional Ni or Zn served as control. After the 90-day experimental period, femoral length, femoral weight and histological structure of the femur were analyzed and compared.</p> <p>Results</p> <p>The results did not indicate a statistically significant difference in either femoral length or weight between the two experimental groups and the control group. Also, differences in qualitative histological characteristics of the femora among rabbits from the three groups were absent, except for a fewer number of secondary osteons found in the animals of groups 1 and 2. However, values for vascular canal parameters of primary osteons were significantly lower in group 1 than in the control one. Peroral administration of a combination of Ni and Zn (group 2) led to a significant decreased size of the secondary osteons.</p> <p>Conclusions</p> <p>The study indicates that dietary supplementation of Ni (35 g NiCl<sub>2 </sub>per 100 kg of feed mixture) and Ni-Zn combination (35 g NiCl<sub>2 </sub>and 30 g ZnCl<sub>2 </sub>per 100 kg of the mixture) affects the microstructure of compact bone tissue in young rabbits.</p
    corecore