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ABSTRACT
Bone microanalyses of extant vertebrates provide a necessary framework from which
to form hypotheses regarding the growth and skeletochronology of extinct taxa.
Here, we describe the bone microstructure and quantify the histovariability of appen-
dicular elements and osteoderms from three juvenile American alligators (Alligator
mississippiensis) to assess growth mark and tissue organization within and amongst
individuals, with the intention of validating paleohistological interpretations. Results
confirm previous observations that lamellar and parallel fibered tissue organization
are typical of crocodylians, and also that crocodylians are capable of forming woven
tissue for brief periods. Tissue organization and growth mark count varies across
individual skeletal elements and reveal that the femur, tibia, and humerus had the
highest annual apposition rates in each individual. Cyclical growth mark count
also varies intraskeletally, but data suggest these inconsistencies are due to differing
medullary cavity expansion rates. There was no appreciable difference in either
diaphyseal circumference or cyclical growth mark circumferences between left and
right element pairs from an individual if diaphyses were sampled from roughly the
same location. The considerable intraskeletal data obtained here provide validation
for long-held paleohistology assumptions, but because medullary expansion, cyclical
growth mark formation, and variable intraskeletal growth rates are skeletal features
found in tetrapod taxa living or extinct, the validations presented herein should be
considered during any tetrapod bone microanalysis.

Subjects Histology, Paleontology
Keywords Histology, Ontogeny, Alligator, Paleontology, Intraskeletal, Growth rates, Variation

INTRODUCTION
The study of fossil bone microstructure grows increasingly important for reconstructing

extinct vertebrate life histories. To interpret the patterns observed in fossil bone

microstructure, transverse diaphyseal sections of extant vertebrates are often assessed as

a framework for comparison. However, the extent to which individual skeletal variation

affects generalized paleohistological interpretations of a taxon’s growth history is largely

unknown.
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With that in mind, we examine the bone microstructure of left and right forelimb

and hindlimb skeletal elements in three specimens of American alligator (Alligator

mississippiensis) to achieve the following goals: (1) Address intraskeletal cyclical growth

mark (CGM) counts to verify CGM utility in vertebrate paleohistology. Cortical bone

tissue often possesses CGMs representing periodically slowed or arrested growth

(de Ricqlès, 1980; Frylestam & von Schantz, 1977; Hemelaar & van Gelder, 1980; Hutton,

1986; Peabody, 1961; Tucker, 1997). The presence of CGMs is widespread in taxa requiring

more than a single year to reach skeletal maturity, including mammals (e.g., Bourdon et

al., 2009; Castanet et al., 2004; de Ricqlès, 1980; de Ricqlès, Padian & Horner, 2001; Köhler et

al., 2012; Peabody, 1961; Turvey, Green & Holdaway, 2005). Because CGMs have an annual

periodicity in extant vertebrates for which data exist (Castanet et al., 1993), the presence of

CGMs is heavily relied upon for determination of annual growth rates and age estimates in

extinct taxa. However, previous non-avian dinosaur bone microanalyses reveal that CGM

count varies based on the particular limb bone sampled, and even by sampling locality

along the diaphysis (Chinsamy, 1993; Horner, de Ricqlès & Padian, 1999; Horner, de Ricqlès

& Padian, 2000). Finding such discrepancies in extant vertebrate bone tissue and their

underlying causes will help determine the reliability of using CGMs for growth assessment

and skeletochronology of not only dinosaurs but vertebrates in general.

(2) Compare differences in bone tissue organization and bone growth rates across

different skeletal elements. The general consensus from examining ratites, ducks, and quail

is that tissue organization and growth rates vary within the diaphysis of a bone, between

diaphyses of different elements from the same individual, and between the diaphyses

of homologous elements in different individuals (Castanet et al., 1996; Castanet et al.,

2000; Starck & Chinsamy, 2002). Our study on alligators offers a complementary test of

growth variability, thereby contributing information on intra- and interskeletal variability

applicable to other vertebrate groups.

(3) Test assumptions concerning tissue organization, CGM presence, and CGM

circumference. The incompleteness of the fossil record or imposed sampling restric-

tions often limits researchers to one bone of an element pair from an individual for

histological examination. Thus, tissue organization, CGM count, CGM spacing, and

CGM circumferences observed in the cortex of that bone are assumed equivalent in the

contralateral element. Because such basic assumptions have far-reaching consequences

for interpreting bone tissue microstructures in both extant and extinct vertebrates, they

should be implicitly tested and confirmed. Our intraskeletal, paired element osteoanalysis

of an extant taxon provides validation for paleohistology foundations and helps ensure

that conclusions regarding the growth histories of any extinct vertebrate taxon are based on

testable histological observations rather than long-held assumptions.

MATERIALS & METHODS
Collection
Paired limbs (excluding manus and pes), scapula, and coracoid, as well as the largest two

nuchal (i.e., postoccipital) osteoderms were obtained from three immature male American
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alligators (Alligator mississippiensis). In February 2007, biological staff at the state-owned

Rockefeller Wildlife Refuge (RWR) in Grand Chenier, Louisiana, USA, terminated three

alligators from the refuge for use in research unassociated with our project or labs. Upon

the request of the senior author, the biological staff salvaged limbs and nuchal osteoderms

from the deceased alligators and supplied them for this study. Two individuals, MOR-OST

1649 (30.8 cm total length) and MOR-OST 1650 (141 cm total length), were raised in

captivity at RWR, while MOR-OST 1648 (95.3 cm total length) was wild-caught on the

refuge. Unfortunately, no snout-vent length, age at death, or body mass data were available,

but the use of immature individuals minimizes the number of CGMs lost to cortical

remodeling and medullary expansion so that accurate age determination is possible.

Previously prepared diaphyseal thin sections from a hatchling alligator (MOR-OST 1647)

were also included in this study to provide neonate cortical dimensions.

Sampling methods
The specimens were prepared for osteohistology and examined at the Museum of the

Rockies (MOR) in Bozeman, Montana, USA. Serial transverse sections were removed

from two nuchal osteoderms as well as from the minimum diaphyseal circumference

of long bones where cortex is thickest (Sander & Andrássy, 2006), and from the most

circumferentially restricted region of scapula and coracoid blades (Figs. 1–3). Both

left and right bones of each element were sampled, except the scapula and coracoid of

MOR-OST 1650 and the radius of MOR-OST 1649. Only a single specimen was available

for examination in those cases: the right scapulocoracoid of MOR-OST 1650 and the left

radius of MOR-OST 1649. Thin sections were prepared using published techniques for

extant mineralized (=undecalcified) crocodylian bone (Schweitzer et al., 2007), except

that the bone samples removed were not cleared in xylene after undergoing the ethanol

dehydration series prior to embedding. At least two slides were made from each diaphysis

and polished until thin enough to observe bone fiber orientation, osteocyte lacunae, and

CGMs using a petrographic transmitted light microscope. This was most often achieved

at specimen thicknesses between 30 µm and 40 µm. One thin section from each diaphysis

was etched in 1% formic acid for thirty seconds with agitation and rinsed with water.

The etched slides were then immersed for five minutes in a warm (57 ◦C) Toluidine blue

staining solution consisting of 1% stock solution of Toluidine blue (Aldrich Chemical

Company, St. Louis, MO) and a pH = 8.0 phosphate buffer (0.075 mL toluidine blue : 1 mL

phosphate buffer). Toluidine blue is often used to stain bone and cartilage because it reacts

with proteoglycans and other proteins in basic solutions. In other skeletochronological

studies, it has been shown to differentiate CGMs more clearly compared to other stains,

such as hematoxylin and eosin (Waye & Gregory, 1998). Finally, thin section slides were

cover-slipped using Poly-Mount (Polysciences, Inc., Warrington, PA) medium.

Analysis
Every thin section was examined in polarized light with either 4 X or 10 X objectives

using an Optiphot-Pol (Nikon Instruments Inc., Tokyo, Japan) polarizing microscope and

either a circular polarizer, a 1/4 lambda plate, or a full lambda (530 nm) plate. Images were
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Figure 1 Line drawings of MOR-OST 1648 skeletal elements with approximate sampling locations
indicated. Long bone elements are arranged left and right in pairs, with proximal ends towards the top
of each sub-figure for humerus (A), radius (B), ulna (C), femur (D), tibia (E), and fibula (F). Left and
right scapulocoracoids (G) are drawn in posterolateral view, the scapula indicated with “s”, and coracoid
with “c”. Two nuchal osteoderms (H) were drawn with anterior to the right. Straight lines through the
drawings indicate the approximate location for sampling, while the numbers correspond to the number
and order of samples removed for processing.
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Figure 2 Line drawings of MOR-OST 1649 skeletal elements with approximate sampling locations
indicated. Long bone elements are arranged left and right in pairs, with proximal ends towards the
top of each sub-figure for humerus (A), radius ((B); only the left radius was sampled), ulna (C), femur
(D), tibia (E), and fibula (F). Left and right scapulocoracoids (G) are drawn in posterolateral view, the
scapula indicated with “s”, and coracoid with “c”. Two nuchal osteoderms (H) were drawn with anterior
to the right. Straight lines through the drawings indicate the approximate location for sampling, while
the numbers correspond to the number and order of samples removed for processing.
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Figure 3 Line drawings of MOR-OST 1650 skeletal elements with approximate sampling locations
indicated. Long bone elements are arranged left and right in pairs, with proximal ends towards the top of
each sub-figure for humerus (A), radius ((B); only the left radius was sampled), ulna (C), femur (D), tibia
(E), and fibula (F). The right scapulocoracoid (G) is drawn in posterolateral view, the scapula indicated
with “s”, and coracoid with “c”. Two nuchal osteoderms (H) were drawn with anterior to the right.
Straight lines through the drawings indicate the approximate location for sampling, while the numbers
correspond to the number and order of samples removed for processing.
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obtained with a DS-Fi1 digital sight camera (Nikon Instruments Inc., Tokyo, Japan), and

compiled using NIS-Elements BR 3.0 (Nikon Instruments Inc., Tokyo, Japan) software.

Polarized light rather than bright field was chosen for analysis as the former tended to make

fiber orientation and CGMs more evident. Mineralized bone fiber orientation was deter-

mined by using polarized light with a full lambda plate, as well as by using circularly polar-

ized light for further confirmation. High resolution images of complete transverse sections

for each thin section are digitally reposited online at MorphoBank (O’Leary & Kaufman,

2012), project P731. See Table S1 for a list of slides and accession numbers. Large-file, full

resolution images of complete transverse sections can be obtained from the senior author.

Trends in osteocyte lacunae appearance were noted, but determination of fiber

organization patterns was not dependent upon them. Fiber organization terminology

is based on Francillon-Vieillot et al. (1990) and is explicitly defined here. Lamellar fibers

are highly organized in parallel within the transverse plane of section, resulting in a

plywood pattern of high birefringence and anisotropy and osteocyte lacunae within the

lamellar tissue are sparse and flattened. Parallel fibered tissue is similar in anisotropic

appearance to lamellar tissue, but with no plywood effect and a more fibrous appearance to

the tissue. We apply the term “loosely parallel fibered tissue” when there is an obvious

parallel arrangement to the fibers in the transverse plane of section, but when the

organization of fibers is somewhat more isotropic than parallel fibered tissue as defined

by Francillon-Vieillot et al. (1990). Within both kinds of parallel fibered tissue, the long axes

of most osteocyte lacunae are also arranged in parallel. Finally, using the terminology

of Francillon-Vieillot et al. (1990), woven tissue is largely isotropic, and no overall

arrangement of fiber orientation is detected (but see Stein & Prondvai (2014) for detailed

discussion of woven bone and fibrolamellar arrangement). Osteocyte lacunae density is

high, and lacunae are scattered at random.

For each transverse section, the diaphyseal circumference as well as the circumference

of each CGM was traced (Fig. 4) in Adobe Photoshop CS3 (Adobe Systems Inc.). CGMs

were identified as either lines of arrested growth (LAGs) or annuli. A LAG appears as a thin

line and indicates an area of hypermineralized tissue formed due to a temporary cessation

of growth (Castanet et al., 1993). An abrupt decrease rather than a pause in apposition is

reflected by an often white or translucent band of well-organized parallel fibers (Castanet

et al., 1993), containing flattened osteocytes and little to no vascularization. This band of

tissue is termed an annulus (Francillon-Vieillot et al., 1990). It is also possible to observe

one or more annuli immediately followed by a LAG, indicating a period of slowed growth

before eventual growth cessation. CGMs were counted and numbered beginning first with

the mark nearest the medullary cavity and proceeding outward towards the bone surface.

There were no instances of “double LAGs” (Caetano & Castanet, 1993; Castanet et al., 1993)

or LAGs that split or merged. However, regional color variation (i.e., “bands” of darker

tissue) about the cortex sometimes imitated CGMs, especially in lamellar tissue. But in

such instances the bands were thicker than annuli or LAGs and would fade and blend into

the surrounding cortex if traced far enough. And despite the typical layered appearance

of lamellar tissue that often makes CGM identification difficult, annuli were recognized
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Figure 4 Transverse thin section of MOR-OST 1650 left humerus illustrating the histological features
that were digitally traced, including medullary cavity circumference, CGM circumferences, and pe-
riosteal surface circumference. On the right side of the image, CGMs in the form of annuli are easily
observed as thin white lines. The left side of the image shows each CGM, as well as the medullary cavity
boundary and the periosteal surface partially traced in green. The green tracings are exaggerated for
clarity, and actual tracings were done using 5 pixel-wide lines. Scale bar, 1 mm.

as white or translucent rings, and LAGs by thin black lines. This distinction was made

more obvious when observing the samples stained with Toulidine blue because the dense

lamellar cortical bone stained blue or purple, annuli remained white or translucent, and

LAGs would stain very dark purple. In some cases where the cortex was largely lamellar,

several thin, faint annuli were found within a zone leading up to a thicker and better

defined annulus, and the pattern repeated in following zones.

LAGs and annuli were often easily completely traced about the transverse section of

the cortex. If the structures in the cortex fit the criteria of CGMs discussed above but

were truncated by resorption due to medullary expansion or drift, or became difficult

to completely trace due to the mark becoming faint, the CGM was still counted and

included in the total. In these cases, circumference measurements were not made and

these instances are noted in Table 1 as “Not Fully Traceable”. Diaphyseal, medullary, and

CGM circumference tracings, as well as cortical area and thickness between each CGM,

were quantified using the BoneJ plugin (Doube et al., 2010) for NIH ImageJ (Rasband,

1997–2012). Measurements can be found in Table 1. Geometric centroid and principal axes

of transverse sections were also determined using the BoneJ plugin. Paired Student’s t-tests

(sample for means, alpha = 0.05) were performed to compare growth mark as well as

diaphyseal surface circumferences between left and right pairs of elements within an indi-

vidual (Table 2). To visually represent the results of the t-test as well as to obtain an R2 value

and a regression equation, a plot of cyclical growth marks and diaphyseal circumferences of

left versus right pairs of elements from all three individuals was also constructed (Fig. 5).

Finally, average daily apposition rates were calculated (Table 3) and graphs of increase

in cortical thickness as well as increase in cortical area were constructed (Figs. 6 and 7).
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Table 1 Data collected for the three alligator individuals included in this study. An asterisk appears next to measurements in which the outermost
cyclical growth mark (CGM) was omitted from measurements. MOR, Museum of the Rockies, Montana, USA.

Specimen
number

Element Location Left cortical
area (mm2)

Right cortical
area (mm2)

Left
circumference
(mm2)

Right
circumference
(mm2)

Average
cortical
thickness of
left element
(mm)

MOR-OST
1648

Coracoid Medullary cavity 4.79 4.45 14.95 9.90 –

Hatchling 1.24 1.24 4.81 4.81 –
CGM 1 Not observed Not observed Not observed Not observed –
CGM 2 8.75 8.06 13.41 12.20 –
CGM 3 10.69 10.58 13.62 13.60 –
Surface 13.93 13.09 15.63 15.08 –

Fibula Medullary cavity 0.06 0.72 2.99 3.62 –
Hatchling 0.43 0.43 3.55 3.55 0.37
CGM 1 Not fully traceable Not observed Not fully traceable Not observed –
CGM 2 Not fully traceable Not observed Not fully traceable Not observed 1.05
CGM 3 4.24 4.29 7.72 7.85 1.17
Surface 5.27 5.40 8.63 8.81 1.30*

Femur Medullary cavity 2.55 3.40 6.08 7.01 –
Hatchling 1.61 1.61 6.74 6.74 0.71
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 2 15.12 15.12 14.82 14.77 2.20
CGM 3 18.52 18.34 16.45 16.29 2.43
Surface 24.70 24.42 18.97 18.81 2.81

Humerus Medullary cavity 2.06 1.91 5.41 5.22 –
Hatchling 1.02 1.02 4.06 4.06 0.57
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 2 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 3 12.90 12.94 13.47 13.51 2.01
Surface 17.31 17.67 15.61 15.76 2.35

Radius Medullary cavity 0.71 0.67 3.17 3.10 –
Hatchling 0.42 0.42 3.42 3.42 0.37
CGM 1 1.21 1.12 4.13 4.00 0.61
CGM 2 3.21 3.16 6.76 6.82 0.99
CGM 3 4.22 4.14 7.78 7.79 1.14
Surface 5.47 5.45 8.86 8.98 1.30

Scapula Medullary cavity 1.85 4.08 8.70 9.46 –
Hatchling 0.70 0.70 5.73 5.73 –
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 2 5.56 Not fully traceable 12.17 Not fully traceable –
CGM 3 7.40 Not fully traceable 13.70 Not fully traceable –
Surface 10.04 16.33 15.33 16.55 –

Tibia Medullary cavity 2.41 2.07 5.89 5.54 –
Hatchling 0.96 0.96 3.95 3.95 0.55
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 2 10.10 9.92 11.99 11.90 1.76
CGM 3 12.45 12.32 13.32 13.20 1.96
Surface 16.13 16.08 15.11 15.10 2.24

Ulna Medullary cavity 0.85 0.99 3.63 3.96 –
Hatchling 0.39 0.39 2.61 2.61 0.36
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –

(continued on next page)
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Table 1 (continued)
Specimen
number

Element Location Left cortical
area (mm2)

Right cortical
area (mm2)

Left
circumference
(mm2)

Right
circumference
(mm2)

Average
cortical
thickness of
left element
(mm)

CGM 2 3.88 3.91 7.62 7.61 1.12
CGM 3 5.28 5.35 8.89 8.91 1.31
Surface 7.22 7.33 10.41 10.49 1.52

MOR-OST
1649

Coracoid Medullary cavity 5.41 5.42 15.61 16.67 –

Hatchling 1.24 1.24 4.81 4.81 –
CGM 1 5.29 Not fully traceable 11.27 Not fully traceable –
CGM 2 9.52 9.91 13.37 13.35 –
CGM 3 15.08 15.85 16.07 16.18 –
CGM 4 18.38 19.52 17.58 17.94 –
CGM 5 Not fully traceable Not observed Not fully traceable Not observed –
Surface 22.40 23.94 19.26 19.73 –

Fibula Medullary cavity 0.68 0.74 3.12 3.28 –
Hatchling 0.43 0.43 3.55 3.55 0.37
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 2 3.51 3.84 7.03 7.37 1.04
CGM 3 5.60 5.67 8.91 8.96 1.33
CGM 4 8.21 8.16 10.83 10.81 1.61
CGM 5 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
Surface 11.06 11.02 12.57 12.63 1.86*

Femur Medullary cavity 6.47 5.03 12.05 11.43 –
Hatchling 1.61 1.61 6.74 6.74 0.71
CGM 1 Not observed Not observed Not observed Not observed –
CGM 2 11.58 13.68 12.87 14.06 1.93
CGM 3 22.54 24.65 17.99 18.78 2.71
CGM 4 35.20 36.23 22.56 22.75 3.39
CGM 5 Not fully traceable Not observed Not fully traceable Not observed –
Surface 47.93 48.57 26.22 26.34 3.89*

Humerus Medullary cavity 3.47 3.01 7.35 6.92 –
Hatchling 1.02 1.02 4.06 4.06 0.57
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 2 7.48 7.13 10.31 10.07 1.53
CGM 3 14.44 14.42 14.29 14.26 2.14
CGM 4 23.12 23.44 18.09 18.26 2.70
CGM 5 31.25 Not observed 21.01 Not observed 3.14
Surface 32.53 32.86 21.44 21.55 3.2*

Radius Medullary cavity 0.51 Not measured 2.82 Not measured –
Hatchling 0.42 Not measured 3.42 Not measured 0.37
CGM 1 3.07 Not measured 6.67 Not measured 0.96
CGM 2 4.95 Not measured 8.48 Not measured 1.26
CGM 3 7.22 Not measured 10.20 Not measured 1.52
CGM 4 10.12 Not measured 12.02 Not measured 1.78
CGM 5 Not observed Not measured Not observed Not measured –
Surface 10.91 Not measured 12.49 Not measured 1.84

Scapula Medullary cavity 2.26 5.73 12.03 16.12 –
Hatchling 0.70 0.70 5.73 5.73 –
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 2 4.30 Not fully traceable 14.01 Not fully traceable –

(continued on next page)
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Table 1 (continued)
Specimen
number

Element Location Left cortical
area (mm2)

Right cortical
area (mm2)

Left
circumference
(mm2)

Right
circumference
(mm2)

Average
cortical
thickness of
left element
(mm)

CGM 3 8.35 Not fully traceable 16.79 Not fully traceable –
CGM 4 13.49 14.89 19.58 17.88 –
CGM 5 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
Surface 20.51 22.31 22.10 21.05 –

Tibia Medullary cavity 3.90 4.58 8.39 8.85 –
Hatchling 0.96 0.96 3.95 3.95 0.55
CGM 1 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
CGM 2 7.98 7.56 10.87 10.47 1.63
CGM 3 14.78 14.70 14.56 14.47 2.22
CGM 4 22.28 22.72 17.81 17.98 2.70
CGM 5 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
Surface 30.24 30.58 20.73 20.86 3.15*

Ulna Medullary cavity 1.11 1.11 4.52 4.32 –
Hatchling 0.39 0.39 2.61 2.61 0.36
CGM 1 Not observed Not observed Not observed Not observed –
CGM 2 Not observed Not observed Not observed Not observed –
CGM 3 6.26 6.06 9.74 9.53 1.43
CGM 4 9.45 9.30 11.91 11.90 1.76
CGM 5 12.90 12.91 13.94 14.06 2.05
Surface 14.05 14.05 14.51 14.59 2.14*

MOR-OST
1650

Coracoid Medullary cavity Not measured 6.90 Not measured 16.27 –

Hatchling Not measured 1.24 Not measured 4.81 –
CGM 1 Not measured Not fully traceable Not measured Not fully traceable –
CGM 2 Not measured 6.01 Not measured 11.67 –
CGM 3 Not measured 15.33 Not measured 15.97 –
CGM 4 Not measured 17.47 Not measured 16.88 –
CGM 5 Not measured Not observed Not measured Not observed –
Surface Not measured 28.93 Not measured 21.50 –

Fibula Medullary cavity 1.43 1.31 4.67 4.41 –
Hatchling 0.43 0.43 3.55 3.55 0.37
CGM 1 3.48 3.87 7.08 7.45 1.04
CGM 2 5.23 5.50 8.66 8.88 1.29
CGM 3 7.89 8.00 10.62 10.71 1.60
CGM 4 9.22 9.43 11.56 11.69 1.73
CGM 5 Not fully traceable Not fully traceable Not fully traceable Not fully traceable –
Surface 14.31 14.27 14.47 14.37 2.17

Femur Medullary cavity 5.56 4.47 9.10 8.50 –
Hatchling 1.61 1.61 6.74 6.74 0.71
CGM 1 15.18 12.46 15.20 13.60 2.16
CGM 2 21.45 19.82 17.73 16.86 2.57
CGM 3 31.63 31.49 21.30 21.21 3.11
CGM 4 37.36 38.03 23.13 23.26 3.39
CGM 5 Not observed Not observed Not observed Not observed –
Surface 56.97 59.47 28.50 29.11 4.16

Humerus Medullary cavity 3.23 2.09 7.33 5.55 –
Hatchling 1.02 1.02 4.06 4.06 0.57
CGM 1 6.78 6.78 9.91 9.78 1.46
CGM 2 12.67 12.48 13.37 13.28 2.02

(continued on next page)
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Table 1 (continued)
Specimen
number

Element Location Left cortical
area (mm2)

Right cortical
area (mm2)

Left
circumference
(mm2)

Right
circumference
(mm2)

Average
cortical
thickness of
left element
(mm)

CGM 3 21.07 21.27 17.25 17.36 2.61
CGM 4 25.05 24.68 18.82 18.69 2.83
CGM 5 Not observed Not observed Not observed Not observed –
Surface 41.56 41.02 24.25 24.04 3.65

Radius Medullary cavity 0.68 0.42 3.28 2.54 –
Hatchling 0.42 0.42 3.42 3.42 0.37
CGM 1 3.26 2.50 6.92 5.97 1.04
CGM 2 4.72 4.49 8.30 8.03 1.25
CGM 3 7.22 7.19 10.20 10.16 1.52
CGM 4 8.68 8.71 11.18 11.17 1.66
CGM 5 12.28 14.05 13.88 14.26 2.04
Surface 13.78 15.65 14.10 14.99 2.09*

Scapula Medullary cavity Not measured 1.06 Not measured 11.40 -
Hatchling Not measured 0.70 Not measured 5.73 –
CGM 1 Not measured 5.50 Not measured 16.59 –
CGM 2 Not measured 7.66 Not measured 17.89 –
CGM 3 Not measured 12.43 Not measured 21.52 –
CGM 4 Not measured 15.39 Not measured 22.58 –
CGM 5 Not measured Not observed Not measured Not observed –
Surface Not measured 26.25 Not measured 26.87 –

Tibia Medullary cavity 4.22 3.98 7.83 7.63 –
Hatchling 0.96 0.96 3.95 3.95 0.55
CGM 1 7.24 Not fully traceable 10.17 Not fully traceable 1.50
CGM 2 13.16 13.60 13.71 13.99 2.06
CGM 3 21.65 22.96 17.70 18.04 2.64
CGM 4 25.24 27.10 18.94 19.58 2.85
CGM 5 Not observed Not observed Not observed Not observed –
Surface 40.24 43.56 23.93 24.87 3.57

Ulna Medullary cavity 2.47 2.00 6.44 5.71 –
Hatchling 0.39 0.39 2.61 2.61 0.36
CGM 1 Not observed Not observed Not observed Not observed –
CGM 2 6.05 5.73 9.60 9.38 1.35
CGM 3 9.50 9.05 11.83 11.62 1.74
CGM 4 11.37 10.82 12.96 12.66 1.87
CGM 5 18.53 17.57 16.46 16.04 2.45
Surface 19.27 18.58 16.74 16.57 2.5*

Annual apposition rates were obtained by measuring the distance from the geometric

centroid of the thin section to each successive growth mark along principal axes. At

each CGM, the four measurements were averaged to obtain cumulative cortical radial

thickness. Annual average cortical radial thickness was obtained by subtracting cumulative

thickness at CGM n from the cumulative thickness at CGM n + 1. Average daily bone

apposition rates were obtained by dividing annual average cortical radial thicknesses by an

estimated 214 growing days in a year (Joanen & McNease, 1987). Annual average cortical

area was similarly determined, by subtracting the cumulative cortical area enclosed by

CGM n from the cumulative cortical area enclosed by CGM n + 1. If growth marks or

their principal axes could not be accurately traced, corresponding measurements were
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Figure 5 A plot comparing left versus right cyclical growth mark (CGM) and surface diaphyseal
circumferences of element pairs. The fitted linear regression with an R2 value of 0.984 and a slope of
1 demonstrates no significant difference between left and right growth mark circumferences or bone
surface circumferences between left and right element pairs from a single individual. Two outliers (a
scapula and a coracoid) may be the result of dissimilar sampling locations between left and right elements
(see Materials and Methods).

omitted from the relevant data tables. Because considerable cortical drift in scapulae and

coracoids prevented measurements of annual cortical thickness from a geometric centroid,

apposition rates and cortical thicknesses were not determined for those elements. In some

cases, a CGM was present very close to or merging with the periosteal surface. Because the

zone of growth between such a CGM and the periosteal surface represents less than a year

of growth (see Discussion), corresponding measurements are omitted from the graphs and

apposition rate calculations.

Estimates of neonate minimum diaphyseal circumferences and cortical areas were

obtained by measuring thin sections from the hatchling alligator MOR-OST 1647.

Although the numerical ages of the juvenile alligators are unknown, the diaphyseal

circumferences of skeletal elements from the neonate alligator establish whether any CGMs

were lost to medullary expansion in the juveniles: if the medullary cavity circumference

from a juvenile bone was larger than the diaphyseal circumference of the homologous

hatchling bone, the possibility that medullary expansion destroyed the earliest CGMs was

considered. Based on this comparison, in at least one skeletal element in each individual

the CGM record could be tracked from the end of the first year until termination. These

complete growth records provide starting points from which to retrocalculate the number

of missing CGMs in other elements from the same individual.
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Table 2 Results of Student’s t-tests performed on cyclical growth mark and diaphyseal circumference measurements of paired homologous
elements. Tests were performed on cyclical growth mark and diaphyseal circumference measurements of paired homologous elements. MOR,
Museum of the Rockies, Montana, USA.

Specimen
number

Skeletal
element

Mean difference
between
circumferences
(mm)

Standard
deviation

Number (n)

of paired
circumferences

P-value Confidence
level

Reject null
hypothesis?

MOR-OST 1648 Coracoid 0.59 0.60 3 0.23 1.48 No

Fibula 0.16 0.04 2 0.10 0.33 No

Femur 0.16 0.00 2 0.01 0.03 No

Humerus 0.10 0.08 2 0.34 0.75 No

Radius 0.02 0.11 4 0.77 0.17 No

Tibia 0.07 0.06 3 0.15 0.14 No

Ulna 0.03 0.05 3 0.35 0.11 No

MOR-OST 1649 Coracoid 0.21 0.24 3 0.28 0.60 No

Fibula 0.11 0.16 4 0.27 0.25 No

Femur 0.57 0.51 4 0.11 0.81 No

Humerus 0.00 0.18 4 0.99 0.29 No

Scapula 1.38 0.46 2 0.15 4.11 No

Tibia 0.05 0.26 4 0.74 0.42 No

Ulna 0.00 0.15 4 0.99 0.23 No

MOR-OST 1650 Fibula 0.14 0.17 5 0.14 0.22 No

Femur 0.36 0.88 5 0.41 1.09 No

Humerus 0.09 0.12 5 0.17 0.15 No

Radius 0.00 0.62 6 1.00 0.58 No

Tibia 0.55 0.30 4 0.04 0.48 Yes

Ulna 0.27 0.10 5 0.00 0.12 Yes

RESULTS
The bone tissue microstructure of crocodylians is extensively studied. Analyses particularly

relevant to our study include de Ricqlès (1976), who observed CGMs within a cortex of

parallel fibered and sometimes woven tissue with longitudinal vascular canals, and more

recently, Lee (2004) provided a detailed ontogenetic description of A. mississippiensis

femoral microstructure and found predominately longitudinal vascularity in parallel

fibered tissue; still other researchers reported woven fibered tissue in bones of both

captive and wild alligators (Chinsamy & Hillenius, 2004; Padian, Horner & Ricqlès, 2004;

Reid, 1984; Reid, 1997; Tumarkin-Deratzian, 2007); studies of captive Siamese crocodiles

(de Buffrenil, 1980; de Buffrénil & Castanet, 2000) revealed a close correlation between the

number of CGMs and individual age, and showed osteoderms are useful for estimating

the age of wild crocodylians (Hutton, 1986; Tucker, 1997); a study by Klein, Scheyer &

Tütken (2009) compared the skeletochronology recorded in the osteoderms and limbs of

a skeletally mature captive female alligator and confirmed that osteoderms are poor age

indicators in breeding females, while also reporting on tissue organization ranging from

lamellar to poorly organized parallel fibered bone.

Woodward et al. (2014), PeerJ, DOI 10.7717/peerj.422 14/34

https://peerj.com
http://dx.doi.org/10.7717/peerj.422


Figure 6 Averages and cumulative averages of annual cortical radial thicknesses. Averaged radial
measurements taken along the major and minor axes from the geometric centroid to each consecutive
CGM provide annual cortical radial thicknesses (A, C, E), while summing consecutive average thicknesses
provides cumulative (ontogenetic) measurements (B, D, F). These measurements provide a linear record
of annual and ontogenetic growth in the elements sampled. The annual increase of cortical thickness was
(continued on next page...)
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Figure 6 (...continued)

in general greatest in the femur, humerus, and tibia of MOR-OST 1648 (A, B), MOR-OST 1649 (C, D),
and MOR-OST 1650 (E, F). Considerable variability exists with regard to yearly and cumulative addi-
tion of cortical thickness when comparing homologous elements across individuals, especially between
MOR-OST 1649 (C, D) and MOR-OST 1650 (E, F), the two captive alligators. Lines with no connection
to the origin indicate growth marks that were either wholly or partially obliterated by medullary cavity
expansion and could not be accurately measured. As exact age of the alligators is unknown, it is more
appropriate to plot growth mark count rather than numerical age on the x-axis. Scapula and coracoid
measurements were omitted because the frequent change in cross sectional shape from year to year
prevented averaging of major and minor axes along cyclical growth marks.

Several observations summarize the bone microstructure patterns seen in our thin

section samples, and many of these observations support the findings of the aforemen-

tioned studies. Medullary cavities are sometimes enclosed by an endosteal layer consisting

of flattened osteocytes embedded within highly organized lamellar tissue (i.e., inner

circumferential lamellae). Bone tissue organization found in elements of the early juvenile

alligators includes lamellar, parallel fibered, loosely parallel fibered, and even woven,

although the predominant tissue organization often varies within and across elements.

Regions of woven tissue were found within the humerus, ulna, femur, tibia, and fibula of

wild-captured MOR-OST 1648, but only in the zone between the first and second CGM.

Elements of MOR-OST 1649 were completely lacking woven tissue, and only the tibia of

MOR-OST 1650 contained regions of woven tissue between the first and second CGM, as

well as between the fourth CGM and the periosteal surface.

Vascular canals are incorporated directly into the bone matrix (simple primary canals)

or encircled by lamellar tissue (primary osteons; see Discussion). They are most often

oriented longitudinal to the transverse plane of section, but are frequently connected by

radial or oblique anastomosing vascular canals.

Thick fiber bundles are scattered throughout the cortex and most are arranged radially,

but some are also circumferential to the transverse plane of section. Radial fibers are often

especially concentrated along the circumference of cortical growth marks. These fibers

are commonly referred to as Sharpey’s fibers, although it must be noted that histological

differentiation between fibers anchoring tendon to bone, and fibers anchoring periost to

bone, is difficult (Hall, 2005). While we emphasize there is continued debate over how

the term should be applied, we use Sharpey’s fibers in the general sense, encompassing all

attachment fibers found embedded within limb bone cortex (Francillon-Vieillot et al., 1990;

Hall, 2005; Ham & Cormack, 1979).

Cyclical growth marks are present in all specimens in the form of either lines of arrested

growth (LAGs) or annuli. No pattern related to ontogeny or captivity status is evident

regarding which kind of growth marks, annuli or LAGs, are formed within the bone. CGMs

in the form of LAGs were most commonly found in the ulna, fibula, and coracoid, but not

restricted to these elements. Annuli are more frequent than LAGs across all specimens.

To determine if enough medullary expansion occurred to fully destroy the oldest CGMs

in a bone and result in intraskeletal CGM count discrepancies, diaphyseal circumferences

of hatchling alligator (MOR-OST 1647) thin sections were compared with the medullary
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Figure 7 Averages and cumulative averages of annual cortical areas. Annual average cortical area is
the area of a zone between two CGMs (A, C, E), while cumulative average cortical area is the additive
area of zones after each year of growth (B, D, F). These measurements provide a two-dimensional record
of annual and ontogenetic growth in the elements sampled. In general, skeletal elements of MOR-OST
1648 (A, B) grew at lower rates than either MOR-OST 1649 (C, D) or MOR-OST 1650 (E, F). However,
the femur, tibia, and humerus consistently had the highest annual growth rates in each alligator. Lines
with no connection to the origin indicate growth marks that were either wholly or partially obliterated
by medullary cavity expansion and could not be accurately measured. As exact age of the alligators is
unknown, it is more appropriate to plot growth mark count rather than numerical age on the x-axis.
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Table 3 Annual average skeletal apposition rates for the three alligator individuals included in this study. An asterisk appears next to measure-
ments in which the outermost cyclical growth mark (CGM) was omitted. MOR, Museum of the Rockies, Bozeman, Montana, USA.

Specimen number Element Location Average cumulative
cortical thickness
(mm)

Average annual
cortical thickness
(mm)

Average apposition
rate (µm/day)

MOR-OST 1648 Fibula Hatchling 0.37 0.37 –

CGM 1 – – –

CGM 2 1.05 – –

CGM 3 1.17 0.12 0.56

CGM 4 – – –

Surface 1.30 0.13 0.61*

Femur Hatchling 0.71 0.71 –

CGM 1 – – –

CGM 2 2.20 – –

CGM 3 2.43 0.23 1.05

CGM 4 – – –

Surface 2.81 0.38 1.78

Humerus Hatchling 0.57 0.57 –

CGM 1 – – –

CGM 2 – – –

CGM 3 2.01 – –

CGM 4 – – –

Surface 2.35 0.34 1.57

Radius Hatchling 0.37 0.36 –

CGM 1 0.61 0.25 1.14

CGM 2 0.99 0.38 1.78

CGM 3 1.14 0.15 0.68

CGM 4 – – –

Surface 1.30 0.17 0.77

Tibia Hatchling 0.55 0.55 –

CGM 1 – – –

CGM 2 1.76 – –

CGM 3 1.96 0.20 0.93

CGM 4 – – –

Surface 2.24 0.28 1.31

Ulna Hatchling 0.36 0.36 –

CGM 1 – – –

CGM 2 1.12 – –

CGM 3 1.31 0.20 0.91

CGM 4 – – –

Surface 1.52 0.21 0.98

MOR-OST 1649 Fibula Hatchling 0.37 0.37 –

CGM 1 – – –

CGM 2 1.04 – –

CGM 3 1.33 0.29 1.36
(continued on next page)
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Table 3 (continued)
Specimen number Element Location Average cumulative

cortical thickness
(mm)

Average annual
cortical thickness
(mm)

Average apposition
rate (µm/day)

CGM 4 1.61 0.28 1.29

CGM 5 – – –

Surface 1.86 0.26 1.19*

Femur Hatchling 0.71 0.71 –

CGM 1 – – –

CGM 2 1.93 – –

CGM 3 2.71 0.79 3.67

CGM 4 3.39 0.68 3.18

CGM 5 – – –

Surface 3.89 0.50 2.34*

Humerus Hatchling 0.57 0.57 –

CGM 1 – – –

CGM 2 1.53 – –

CGM 3 2.14 0.61 2.85

CGM 4 2.70 0.56 2.62

CGM 5 3.14 – –

Surface 3.20 0.50 2.36*

Radius Hatchling 0.37 0.36 –

CGM 1 0.96 0.59 2.76

CGM 2 1.26 0.30 1.40

CGM 3 1.52 0.26 1.21

CGM 4 1.78 0.26 1.21

CGM 5 – – –

Surface 1.84 0.06 0.30

Tibia Hatchling 0.55 0.55 –

CGM 1 – – –

CGM 2 1.63 – –

CGM 3 2.22 0.59 2.76

CGM 4 2.70 0.48 2.24

CGM 5 – – –

Surface 3.15 0.45 2.10*

Ulna Hatchling 0.36 0.36 –

CGM 1 – – –

CGM 2 – – –

CGM 3 1.43 – –

CGM 4 1.76 0.34 1.57

CGM 5 2.05 – –

Surface 2.14 0.38 1.78*

MOR-OST 1650 Fibula Hatchling 0.37 0.37 –

CGM 1 1.04 0.66 3.10

CGM 2 1.29 0.26 1.19

CGM 3 1.60 0.31 1.46
(continued on next page)
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Table 3 (continued)
Specimen number Element Location Average cumulative

cortical thickness
(mm)

Average annual
cortical thickness
(mm)

Average apposition
rate (µm/day)

CGM 4 1.73 0.13 0.60

CGM 5 – – –

Surface 2.17 0.44 2.04

Femur Hatchling 0.71 0.71 –

CGM 1 2.16 1.46 6.80

CGM 2 2.57 0.41 1.93

CGM 3 3.11 0.53 2.49

CGM 4 3.39 0.28 1.31

CGM 5 – – –

Surface 4.16 0.78 3.63

Humerus Hatchling 0.57 0.57 –

CGM 1 1.46 0.89 4.16

CGM 2 2.02 0.56 2.59

CGM 3 2.61 0.59 2.76

CGM 4 2.83 0.23 1.05

CGM 5 – – –

Surface 3.65 0.82 3.83

Radius Hatchling 0.37 0.36 –

CGM 1 1.04 0.67 3.14

CGM 2 1.25 0.21 0.97

CGM 3 1.52 0.28 1.30

CGM 4 1.66 0.14 0.65

CGM 5 2.04 – –

Surface 2.09 0.42 1.97*

Tibia Hatchling 0.55 0.55 –

CGM 1 1.50 0.95 4.44

CGM 2 2.06 0.56 2.59

CGM 3 2.64 0.58 2.71

CGM 4 2.85 0.21 0.98

CGM 5 – – –

Surface 3.57 0.72 3.36

Ulna Hatchling 0.36 0.36 –

CGM 1 – – –

CGM 2 1.35 – –

CGM 3 1.74 0.39 1.81

CGM 4 1.87 0.13 0.58

CGM 5 2.45 – –

Surface 2.50 0.63 2.96*

circumferences of homologous elements from each of the three juvenile alligators

(Table 1). In many elements, the circumference of the medullary cavity is less than or

nearly equal to the periosteal surface circumference of homologous hatchling elements.

In such instances no growth marks are completely destroyed by bone resorption
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associated with medullary cavity enlargement, so that the innermost CGM observed is

the first to have formed.

Because thin section processing was done by hand, sometimes one thin section out of

several made from an element was polished thinner than the others. It was only in sections

polished too thin that CGMs became vague and difficult to trace, seeming to disappear

into the surrounding bone fabric. When this occurred, often slides stained with Toluidine

blue aided in locating the faint marks. Our observations suggest that researchers should

consider errors in procedure when observing inconsistent intraskeletal CGM counts if

medullary expansion or secondary remodeling is not evident.

Qualitative descriptions
The general bone histology of crocodylians is well known, but descriptions of bone

microstructure specific to each appendicular element are lacking. Therefore, detailed

qualitative histologic descriptions and figures of each skeletal element examined are

provided in the Supplemental Information. Unless noted, no great differences in tissue

organization were observed between left and right element pairs in the same individual.

Quantification of results
Quantitative analyses document trends in skeletal growth rates and variability. A Student’s

t-test (Table 2) was performed on paired element measurements from all three alligators,

for a total of twenty pairs. With only two exceptions (the tibia and ulna of MOR-OST

1650), there was no significant difference in the circumferences of CGMs or in diaphyseal

circumferences between left and right pairs in each individual. Plotting left versus right

CGMs and diaphyseal surface circumferences for each element (Fig. 5) results in a fitted

linear curve (y = 1x − 0.047) producing an R2 value of 0.98. Additionally, average daily

bone apposition rates (Table 3), annual and cumulative average cortical radial thicknesses

(Fig. 6), and annual and cumulative average cortical areas (Fig. 7) demonstrate trends as

well as variability in intraskeletal bone growth across individuals.

DISCUSSION
Woven tissue
Woven tissue is commonly found in dinosaurs, birds, and large-bodied mammals, and

occurs infrequently in crocodylians. When present in crocodylians, it is usually found

in individuals raised in artificially optimum conditions encouraging fast growth, or

in fast growing early juveniles (Padian, Horner & Ricqlès, 2004). Woven tissue has also

been reported in wild alligators (Chinsamy & Hillenius, 2004; Reid, 1984; Reid, 1997;

Tumarkin-Deratzian, 2007). However, woven tissue deposition is not sustained throughout

ontogeny and a strong “fibrolamellar complex” like that observed in dinosaurs, birds, and

mammals is not present. It is interesting that a wild alligator (MOR-OST 1648), living in

sub-optimal conditions, produced woven tissue in more elements than either MOR-OST

1649 or MOR-OST 1650, which were raised in captivity. Differences in tissue organization

spanning both captive and wild animals therefore suggest individual variation in growth

unrelated to environmental stresses.
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The woven-fibered regions within elements of MOR-OST 1648 and MOR-OST 1650

not only contain simple primary canals, but also vessels enclosed by a nearly acellular,

lamellated parallel fibered tissue (i.e., primary osteons) (Fig. 8). The combination of

woven-fibered tissue and primary osteons, which is previously reported in crocodylians

(e.g., Chinsamy & Hillenius, 2004; de Ricqlès, 1983; de Ricqlès, Padian & Horner, 2001;

Horner, Padian & Ricqlès, 2001; Padian, Horner & Ricqlès, 2004; Reid, 1984; Reid, 1987; Reid,

1990; Tumarkin-Deratzian, 2007), is commonly described as fibrolamellar. In our study,

the areas of woven tissue are patchy or discontinuous, and simple primary canals are

also scattered amongst the primary osteons. Simple primary canals are rarely, if ever,

reported in well-developed fibrolamellar tissue. Also, primary osteons found within

fibrolamellar tissue of many non-avian dinosaurs (Fig. 8F) and extant endotherms are

relatively large structures made of multiple lamellae, often encompassing more than

one vascular canal, and contain numerous osteocytes (Padian & Horner, 2004). This

contrasts with the small size of the alligator primary osteons, which contain few lamellae

and infrequent osteocytes. Klein (2010) and Konietzkoo-Meier & Klein (2013) described

similar structures in the early juvenile bone tissues of certain eusauropterygians and

temnospondyls, respectively. These authors termed such tissue “incipient fibrolamellar”.

Perhaps the incipient fibrolamellar tissue in the alligators observed here and in previous

alligator studies results from temporary, unsustained rapid growth in those individuals.

In this context, the presence of such tissue organization supports the hypothesis that

under certain conditions crocodylians retain the primitive archosaur capacity for growing

at elevated rates (Cubo et al., 2012; Legendre, Segalen & Cubo, 2013), possibly as a result

of their efficient respiratory system (Cubo et al., 2012; Farmer & Sanders, 2010). On the

other hand, existence of this incipient fibrolamellar tissue in temnospondyls implies the

ability for brief rapid growth in predominantly slow growing taxa may be a primitive

characteristic of tetrapods in general.

Regardless of the evolutionary history or causes of incipient fibrolamellar tissue

formation, it is important to distinguish characteristics associated with temporary rapid

growth observed in alligators from tissue characteristics associated with sustained rapid

growth observed in many mammals and birds today. Unfortunately, use of the term

“fibrolamellar” has become quite subjective in recent years (Stein & Prondvai, 2014) as

authors infrequently define or provide images to explain their intended meaning. To avoid

confusion, it is best to clearly define the terminology used or to refrain from subjective

terms such as fibrolamellar in favor of simply describing tissue organization and structures

present (Werning, 2012).

Cyclical growth marks
Generally, the kind of CGMs present (i.e., LAG, annulus, or annulus followed by a LAG)

vary individually and by year rather than corresponding to a particular element, tissue

arrangement, or even to captivity status. Variation in CGM number was observed across

different elements from an individual but CGM count was consistent amongst the serial

thin sections taken from the diaphysis of the same bone.
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Figure 8 Examples of woven tissue and primary osteons within diaphyseal sections. Primary osteons
(examples in dashed outlines) are embedded within a woven tissue matrix in (A) the ulna of MOR-OST
1648, (B) the tibia of MOR-OST 1650, (C) the humerus of MOR-OST 1648, (D) the tibia of MOR-OST
1648, (E) the fibula of MOR-OST 1648, and (F) the tibia of the non-avian dinosaur Maiasaura (MOR 005
T11-3) for comparison. The primary osteons of the alligators have fewer lamellae and are more acellular
than those from the Maiasaura. Simple primary canals (examples indicated by arrows) are scattered
amongst the primary osteons in the alligator tissue but are not present in the Maiasaura section. Scale
bars, 100 µm.

Several bones from the captive alligators displayed an annulus very close to, and often

merging with, the periosteal surface while other bones (including contralateral bones of

the same individual in some cases) lacked this extra mark. This particular discrepancy

likely has a simple explanation. Alligators in Louisiana annually enter a state of greatly

decreased activity and appetite beginning in October and ending in March regardless of
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captivity status (Chabreck & Joanen, 1979; Coulson, Coulson & Hernandez, 1973; Joanen

& McNease, 1987). Specimens used in this study were terminated during the month of

February. It is possible that as the alligators began to emerge from their torpid state some

elements resumed apposition before others, making an extra CGM visible due to the small

addition of new tissue (Fig. 9). Our preliminary findings suggest this is an avenue for

focused research as this hypothesis has implications for interpreting CGMs found near the

periosteal surface in fossils.

Previous histologic studies on reptiles reveal that medullary expansion results in CGM

count discrepancies (Griffiths, 1961; Hutton, 1986), and that in older crocodylians and

particularly in breeding females, secondary remodeling (Schweitzer et al., 2007) and

conversion from compact to cancellous bone (Hutton, 1986) also contributes to CGM

loss. Due to the early juvenile status of the alligators in our study, no significant amount

of secondary remodeling within the cortex or conversion of cortex to cancellous bone was

observed. Only in instances where the medullary cavity circumference was larger than

the hatchling diaphyseal circumference did a reduced number of CGMs occur, suggesting

that medullary expansion accounts for differences we observed in CGM number within

the cortex across elements. This observation was independently tested using the bone

microstructure of MOR-OST 1650. In every bone the third and fourth CGMs were

closely spaced, outlining a narrow zone of primary tissue within the cortex (Fig. 10).

This is not considered an instance of a single hiatus represented by a “double LAG”

(Caetano & Castanet, 1993; Castanet et al., 1993) because the tissue organization within

the narrow zone indicates no significant decrease in apposition occurred during that

time. Additionally, the two CGMs do not follow a similar pathway as is typical in double

LAGs and are instead independent of each other. This relatively small zone may instead

indicate a particularly long period of arrested growth during the fourth year of life. In

this way the narrow zone provides a natural “label”, so that even if medullary expansion

obliterated inner CGMs, the number missing could be determined using the narrow zone

as a landmark and complete growth records from other bones of MOR-OST 1650 as

guides. The histology of MOR-OST 1650 therefore provides strong evidence that it is the

action of medullary expansion (as well as cortical remodeling in older animals) causing

CGM counts to vary within the cortex, and it is not because some elements form CGMs

yearly while others do not.

Although tissue organization and cyclical growth mark counts varied across different

skeletal elements within an individual, Sharpey’s fibers (e.g., Fig. S1) were present

in every thin section examined. The fibers were often especially dense near CGMs.

During the period of slowed or arrested growth indicated by CGMs, the periosteum

and mineralization front were essentially stationary. Since Sharpey’s fibers anchor the

periosteum and tendons to the bone matrix (Francillon-Vieillot et al., 1990; Hall, 2005;

Ham & Cormack, 1979), it follows that there would be a concentration of fibers if the

periosteum was periodically static. Locating dense bands of Sharpey’s fibers may therefore

aid in identifying vague or faint growth marks both in extant and extinct animals.
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Figure 9 Detail of the outer cortex from elements of MOR-OST 1649 and MOR-OST 1650 showing
a fifth cyclical growth mark. An arrow indicates this outermost fifth growth mark, observed in many
elements of the two captive alligators. (A) the humerus of MOR-OST 1649. Scale bar, 500 µm; (B) the
humerus of MOR-OST 1650. Scale bar, 500 µm; (C) the radius of MOR-OST 1650. Scale bar, 100 µm; (D)
the ulna of MOR-OST 1649. Scale bar, 100 µm; (E) the ulna of MOR-OST 1650. Scale bar, 500 µm; (F)
the femur of MOR-OST 1649. Scale bar, 500 µm; (G) the tibia of MOR-OST 1649. Scale bar, 500 µm; (H)
the fibula of MOR-OST 1649. Scale bar, 100 µm; (I) the scapula of MOR-OST 1649. Scale bar, 100 µm;
(J) the scapula of MOR-OST 1650. Scale bar, 100 µm.
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Figure 10 The third and fourth cyclical growth marks in every sampled element of MOR-OST
1650. These growth marks are unusually closely spaced in all sampled elements, providing a natural
“marker” within the cortex. They are indicated by arrows in (A) the humerus, (B) radius, (C) ulna, (D)
femur, (E) tibia, (F) fibula, (G) coracoid, and (H) scapula. Scale bars, 100 µm.
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Statistical analyses and growth curves
Because of the immature nature of the alligator specimens, the number of corresponding

left and right CGMs as well as left and right diaphyseal circumference measurements

(n) included in the Student’s t-test of each skeletal element was low (the largest sample

set was n = 6), making the chance for statistical errors quite high (including incorrect

rejection of the null hypothesis of no difference (Type I) and failure to reject a false

null hypothesis (Type II)). Out of twenty paired elements tested only the tibia and ulna

from MOR-OST 1650 rejected the null hypothesis of no difference between left and right

CGM circumferences (Table 2). In the case of the tibia, the right sample measured was

located more proximal along the diaphysis relative to the sample measured from the

left tibia, which may account for the discrepancy. Because eighteen of the twenty pairs

statistically demonstrated a result of no difference, it is very possible that rejection of the

null hypothesis for the ulna of MOR-OST 1650 is the result of a Type I error.

In addition to a t-test, left versus right CGM and surface circumference measurements

for each skeletal element sampled were plotted to assess any relationship between the

measurements (Fig. 5). The result (R2
= 0.984) provides the first quantitative validation

that there is no appreciable variation in CGM circumferences or surface diaphyseal

circumferences between left and right pairs in an individual if sampled from roughly

the same location.

Average daily apposition rates were determined for each element from an individual

(Table 3) assuming a 214 day growing season (Joanen & McNease, 1987). Rates ranged

between 0.3 and 6.8 µm/day, which is consistent with measurements obtained in previous

crocodylian studies (Cubo et al., 2012; Padian, Horner & Ricqlès, 2004; Padian, Ricqlès &

Horner, 2001; Roberts et al., 1988). The femur, humerus, and tibia achieved the highest

annual rates within each individual. The highest apposition rate recorded was 6.8 µm/day,

from the femur of MOR-OST 1650 during its first year of life. Comparing skeletal

apposition rates (Table 3), annual cortical radial thickness (Fig. 6), and annual cortical

area (Fig. 7) from the three alligators shows the growth rate of wild-captured MOR-OST

1648 was in general lower than either captive raised MOR-OST 1649 or MOR-OST 1650.

Captive alligators provided with a reliable food source grow more rapidly than their wild

counterparts, often attaining twice the length of a wild alligator of the same age in a single

year (de Ricqlès, 1983). Regardless, there was variability in rates both within and across

individuals. Apposition rates for all elements of wild-caught MOR-OST 1648 at the end of

the third year of growth were lower than those for either captive alligator, but at the end

of the fourth year several elements of MOR-OST 1648 had higher apposition rates than

corresponding elements of MOR-OST 1650. This is likely due to the unusually long growth

hiatus experienced by MOR-OST 1650 during the fourth year, as this would artificially

depress the apposition rate.

In elements containing a complete annual growth record, apposition rates were highest

during the first year of growth and generally did not return to those rates during the time

interval recorded in this study. The exception to this observation is the radius of MOR-OST

1648, in which the highest apposition rate (1.78 µm/day) occurred during the second year
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of life. The second year of life is also when woven tissue was present in many elements

of MOR-OST 1648, although not in the radius. Trends in annual average cortical area

often mirrored those observed in annual average apposition and cortical radial thickness

measurements. For example, elements with high annual average cortical thicknesses also

had higher annual average cortical areas, but this relationship does not always hold true.

Although cortical thickness decreased in every element except the ulna during the fifth year

of life in MOR-OST 1649, cortical area was still higher than the previous year for every

element except the radius. This is because elements with larger circumferences (e.g., femur,

humerus, tibia) require only a small addition of cortex to increase in cortical area while

elements with smaller circumferences, such as the radius, require a large addition to

cortical thickness to greatly increase cortical area.

These quantitative data are supported by bone fiber organization. The femur, tibia,

and humerus had the highest apposition rates and were the most vascularized with either

parallel fibered tissue or a combination of parallel fibered and woven tissue. The radius and

fibula had the lowest yearly apposition rates in each individual, correlating with reduced

vascularity and highly organized lamellar or parallel fibered tissue.

Based on osteohistology the femur, tibia, and humerus are most useful for determining

the maximum growth rates of alligators. These elements did tend to have considerable

medullary expansion, however, making them less desirable for skeletochronology.

Comparatively less medullary expansion and drift resulted in a consistently high number

of complete CGMs in the radius, making it preferable for alligator skeletochronology. The

ulna, scapula, and coracoid also resembled the radius in tissue organization, but medullary

expansion and drift often obscured or obliterated inner CGMs, making these elements less

desirable for skeletochronology. But as demonstrated by MOR-OST 1650, it is possible

for many elements to retain inner CGMs for an extended duration, suggesting rates of

medullary expansion also vary considerably between homologous elements in different

individuals.

Osteoderms
Unlike endochondral skeletal elements, growth data were not successfully collected from

osteoderms. Hutton (1986), as well as Tucker (1997), achieved success by using osteoderms

for skeletochronology in older, larger, and less actively growing crocodylians, but both

authors noted that the osteoderms of breeding females often experienced greater conver-

sion of compact bone to cancellous bone which obscured growth marks. Osteoderms were

poor indicators of age in the present study because the disorganized tissue and abundant

Sharpey’s fibers obscured growth marks. This disorganization was likely due in part to the

immature status of the individuals, but may also be due to sectioning transversely across

the keel rather than parallel to it. Our result implies that the processes obscuring CGMs in

the young alligators (tissue disorganization and abundant Sharpey’s fibers) are different

than the processes resulting in obfuscation of CGMs in adults, especially in the case of

sexually mature females. The histology does demonstrate the highly porous and richly
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vascularized nature of osteoderms, supporting hypotheses that besides armored defense,

osteoderms serve additional functions such as aiding in thermoregulation or for muscular

bracing (e.g., Farlow, Hayashi & Tattersall, 2010; Frey, 1988).

CONCLUSIONS
Our study addressed intraskeletal variability in alligator bone microstructure and also

compared the growth rates and microstructures of homologous elements across three

alligator individuals. The small interskeletal sample size of three means additional studies

are needed to confirm that observations hold true for crocodylians and vertebrates in

general, but our preliminary results hint at the potential extent of individual variation that

may go unaccounted for in bone tissue microanalyses.

Individual intraskeletal variability is seldom addressed in fossil or modern bone

histology, but is an important factor to consider when making growth history gener-

alizations based on bone microstructure. Extant vertebrate intraskeletal studies aid in

understanding individual variability as well as help validate long-standing paleohistologic

assumptions. Using Alligator mississipiensis skeletal elements, we demonstrated that the

intraskeletal CGM count discrepancies reported in previous paleohistology studies are

largely the result of differing medullary expansion rates and secondary remodeling, and

not because CGMs form inconsistently from year to year. Therefore CGMs do seem

a reliable form of skeletochronology independent of appendicular element sampled,

provided that medullary cavity expansion rate and secondary remodeling is slow, or

that age retrocalculations are based on superimposing an ontogenetic series of CGMs

to reconstruct growth history.

Medullary expansion rates and secondary remodeling may affect CGM counts between

elements in an individual, but CGM counts were consistent across serial thin sections

taken within the diaphysis of the same bone. Diaphyseal surface circumferences, cortical

CGM circumferences, and cortical histology were also consistent between left and right

homologous elements within an individual, providing quantitative evidence for long-held

paleohistology assumptions.

We also demonstrate that the humerus, tibia, and femur are optimal for studying

maximum alligator growth rates while the radius is more useful for skeletochronology.

Thus, there are likely optimal elements in other vertebrate taxa for use in growth rate

studies or skeletochronology.

Alligator mississippiensis intraskeletal bone tissue microstructures were described and

quantified to validate preexisting assumptions used by paleohistologists for interpreting

the growth histories of extinct taxa. The validations presented here therefore contribute

to the quantitative framework necessary for confirming the importance and reliability of

CGMs and tissue organization in studies on any vertebrate taxon, living or extinct.
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