200 research outputs found
Genèse d’un problème social. Entre moralisation et médicalisation : la lutte antialcoolique en France (1850-1915)
L’article propose une généalogie de la formation d’un problème public de santé. Apparue au milieu du dix-neuvième siècle, d’abord à l’intérieur de l’espace de la médecine, la lutte contre l’alcoolisme va largement se diffuser à d’autres espaces sociaux, notamment celui de la politique, par l’intermédiaire de la théorie de la dégénérescence. Cette thématique de la dégénérescence de la « race » qui met en danger l’ordre social est, en effet, reprise par de nombreux réformateurs sociaux tout empreints de visions du monde directement issues de l’hygiénisme, qui est alors devenu le point de concours de toute une nouvelle morale sociale. Lutter contre l’alcoolisme, c’est aussi, dans l’esprit des élites dirigeantes de la Troisième République, moraliser les classes populaires et ainsi contrôler leurs modes de vie.This article provides a genealogy of the creation of a public health problem. An anti-alcoholism campaign first emerged in the middle of the 19th century within the medical domain. It then spread to others, especially into politics, by means of the theory of degeneracy. This notion that social order was threatened by the degeneration of the “race” was taken up by many social reformers, all of whose world views came from hygienics, which then became the point of convergence of a whole new social morality. In the minds of the Third Republic’s elites, overcoming alcoholism was the way to improve the morals of the popular classes and control their life styles
Electrical Stimulation Influences Satellite Cell Proliferation and Apoptosis in Unloading-Induced Muscle Atrophy in Mice
Muscle atrophy caused by disuse is accompanied by adverse physiological and functional consequences. Satellite cells are the primary source of skeletal muscle regeneration. Satellite cell dysfunction, as a result of impaired proliferative potential and/or increased apoptosis, is thought to be one of the causes contributing to the decreased muscle regeneration capacity in atrophy. We have previously shown that electrical stimulation improved satellite cell dysfunction. Here we test whether electrical stimulation can also enhance satellite cell proliferative potential as well as suppress apoptotic cell death in disuse-induced muscle atrophy. Eight-week-old male BALB/c mice were subjected to a 14-day hindlimb unloading procedure. During that period, one limb (HU-ES) received electrical stimulation (frequency: 20 Hz; duration: 3 h, twice daily) while the contralateral limb served as control (HU). Immunohistochemistry and western blotting techniques were used to characterize specific proteins in cell proliferation and apoptosis. The HU-ES soleus muscles showed significant improvement in muscle mass, cross-sectional area, and peak tetanic force relative to the HU limb (p<0.05). The satellite cell proliferative activity as detected within the BrdU+/Pax7+ population was significantly higher (p<0.05). The apoptotic myonuclei (detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and the apoptotic satellite cells (detected by cleaved Poly [ADP-ribose] polymerase co-labeled with Pax7) were reduced (p<0.05) in the HU-ES limb. Furthermore the apoptosis-inducing factor and cleaved caspase-3 were down-regulated while the anti-apoptotic Bcl-2 protein was up-regulated (p<0.05), in the HU-ES limb. These findings suggest that the electrical stimulation paradigm provides an effective stimulus to rescue the loss of myonuclei and satellite cells in disuse muscle atrophy, thus maintaining a viable satellite cell pool for subsequent muscle regeneration. Optimization of stimulation parameters may enhance the outcome of the intervention
Calpain 3 Is a Rapid-Action, Unidirectional Proteolytic Switch Central to Muscle Remodeling
Calpain 3 (CAPN3) is a cysteine protease that when mutated causes Limb Girdle Muscular Dystrophy 2A. It is thereby the only described Calpain family member that genetically causes a disease. Due to its inherent instability little is known of its substrates or its mechanism of activity and pathogenicity. In this investigation we define a primary sequence motif underlying CAPN3 substrate cleavage. This motif can transform non-related proteins into substrates, and identifies >300 new putative CAPN3 targets. Bioinformatic analyses of these targets demonstrate a critical role in muscle cytoskeletal remodeling and identify novel CAPN3 functions. Among the new CAPN3 substrates are three E3 SUMO ligases of the Protein Inhibitor of Activated Stats (PIAS) family. CAPN3 can cleave PIAS proteins and negatively regulates PIAS3 sumoylase activity. Consequently, SUMO2 is deregulated in patient muscle tissue. Our study thus uncovers unexpected crosstalk between CAPN3 proteolysis and protein sumoylation, with strong implications for muscle remodeling
Redox modulation of muscle mass and function
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested
Evolving concepts on the age-related changes in “muscle quality”
The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term “muscle quality” to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system—starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers—that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power)
The Atypical Calpains: Evolutionary Analyses and Roles in Caenorhabditis elegans Cellular Degeneration
The calpains are physiologically important Ca2+-activated regulatory proteases, which are divided into typical or atypical sub-families based on constituent domains. Both sub-families are present in mammals, but our understanding of calpain function is based primarily on typical sub-family members. Here, we take advantage of the model organism Caenorhabditis elegans, which expresses only atypical calpains, to extend our knowledge of the phylogenetic evolution and function of calpains. We provide evidence that a typical human calpain protein with a penta EF hand, detected using custom profile hidden Markov models, is conserved in ancient metazoans and a divergent clade. These analyses also provide evidence for the lineage-specific loss of typical calpain genes in C. elegans and Ciona, and they reveal that many calpain-like genes lack an intact catalytic triad. Given the association between the dysregulation of typical calpains and human degenerative pathologies, we explored the phenotypes, expression profiles, and consequences of inappropriate reduction or activation of C. elegans atypical calpains. These studies show that the atypical calpain gene, clp-1, contributes to muscle degeneration and reveal that clp-1 activity is sensitive to genetic manipulation of [Ca2+]i. We show that CLP-1 localizes to sarcomeric sub-structures, but is excluded from dense bodies (Z-disks). We find that the muscle degeneration observed in a C. elegans model of dystrophin-based muscular dystrophy can be suppressed by clp-1 inactivation and that nemadipine-A inhibition of the EGL-19 calcium channel reveals that Ca2+ dysfunction underlies the C. elegans MyoD model of myopathy. Taken together, our analyses highlight the roles of calcium dysregulation and CLP-1 in muscle myopathies and suggest that the atypical calpains could retain conserved roles in myofilament turnover
Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis
Citation: Herrera C, Macêdo JKA, Feoli A, Escalante
T, Rucavado A, Gutiérrez JM, et al. (2016) Muscle
Tissue Damage Induced by the Venom of Bothrops
asper: Identification of Early and Late Pathological
Events through Proteomic Analysis. PLoS Negl Trop
Dis 10(4): e0004599. doi:10.1371/journal.
pntd.0004599The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM) and other extracellular matrix (ECM) proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs) or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.Universidad de Costa Rica/[741-B4-660]/UCR/Costa RicaUniversidad de Costa Rica/[741-B6-125]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP
Experimental pathology of local tissue damage induced by Bothrops asper snake venom
Envenomations by Bothrops asper are often associated with complex and severe local pathological manifestations, including edema, blistering, dermonecrosis, myonecrosis and hemorrhage. The pathogenesis of these alterations has been investigated at the experimental level. These effects are mostly the consequence of the direct action of zinc-dependent metalloproteinases (SVMPs) and myotoxic phospholipases A2 (PLA2s). SVMPs induce hemorrhage, blistering, dermonecrosis and general extracellular matrix degradation, whereas PLA2s induce myonecrosis and also affect lymphatic vessels. In addition, the prominent vascular alterations leading to hemorrhage and edema may contribute to ischemia and further tissue necrosis. The mechanisms of action of SVMPs and PLA2s are discussed in detail in this review. Venom-induced tissue damage plays also a role in promoting bacterial infection. A prominent inflammatory reaction develops as a consequence of these local pathological alterations, with the synthesis and release of abundant mediators, resulting in edema and pain. However, whether inflammatory cells and mediators contribute to further tissue damage is not clear at present. Muscle tissue regeneration after venom-induced pathological effects is often impaired, thus resulting in permanent tissue loss and dysfunction. SVMP-induced microvessel damage is likely to be responsible of this poor regenerative outcome. Antivenoms are only partially effective in the neutralization of B. asper-induced local effects, and the search for novel toxin inhibitors represents a potential avenue for improving the treatment of this serious aspect of snakebite envenomation.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP
- …