33 research outputs found

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Novel At-Home Mother’s Milk Conductivity Sensing Technology as an Identification System of Delay in Milk Secretory Activation Progress and Early Breastfeeding Problems: Feasibility Assessment

    No full text
    BackgroundProlonged exclusive breastfeeding is a public health priority and a personal desire by mothers; however, rates are low with milk supply challenges as a predominant cause. Early breastfeeding management at home is key. Milk electrolytes, mainly sodium ions, are accepted as biomarkers of secretory activation processes throughout the first weeks after birth and predictors for prolonged breastfeeding success, although they are not incorporated into routine care practice. ObjectiveThe aim of this study was to test the feasibility of a novel handheld smartphone-operated milk conductivity sensing system that was designed to compute a novel parameter, milk maturation percent (MM%), calculated from milk sample conductivity for tracking individual secretory activation progress in a real-world home setting. MethodsSystem performance was initially evaluated in data collected from laboratory-based milk analysis, followed by a retrospective analysis of observational real-world data gathered with the system, on the spot in an at-home setting, implemented by lactation support providers or directly by mothers (N=592). Data collected included milk sample sensing data, baby age, and self-reported breastfeeding status and breastfeeding-related conditions. The data were retroactively classified in a day after birth–dependent manner. Results were compared between groups classified according to breastfeeding exclusivity and breastfeeding problems associated with ineffective breastfeeding and low milk supply. ResultsLaboratory analysis in a set of breast milk samples demonstrated a strong correlation between the system’s results and sodium ion levels. In the real-world data set, a total of 1511 milk sensing records were obtained on the spot with over 592 real-world mothers. Data gathered with the system revealed a typical time-dependent increase in the milk maturation parameter (MM%), characterized by an initial steep increase, followed by a moderate increase, and reaching a plateau during the first weeks postpartum. Additionally, MM% levels captured by the system were found to be sensitive to breastfeeding status classifications of exclusive breastfeeding and breastfeeding problems, manifested by differences in group means in the several-day range after birth, predominantly during the first weeks postpartum. Differences could also be demonstrated for the per-case time after birth–dependent progress in individual mothers. ConclusionsThis feasibility study demonstrates that the use of smart milk conductivity sensing technology can provide a robust, objective measure of individual breastfeeding efficiency, facilitating remote data collection within a home setting. This system holds considerable potential to augment both self-monitoring and remote breastfeeding management capabilities, as well as to refine clinical classifications. To further validate the clinical relevance and potential of this home milk monitoring tool, future controlled clinical studies are necessary, which will provide insights into its impact on user and care provider satisfaction and its potential to meet breastfeeding success goals
    corecore