103 research outputs found

    ..

    Get PDF

    Hutchison Medallist 1. Wave-Dominated to Tide-Dominated Coastal Systems: A Unifying Model for Tidal Shorefaces and Refinement of the Coastal- Environments Classification Scheme

    Get PDF
    Coastal depositional systems are normally classified based on the relative input of wave, tide, and river processes. While wave- through to river-dominated environments are well characterized, environments along the wave-to-tide continuum are relatively poorly understood and this limits the reliability and utility of coastal classification schemes. Two tidal shoreface models, open-coast tidal flats (OCTF) and tidally modulated shorefaces (TMS), have been introduced for mixed wave-tide coastal settings. Following nearly two decades of research on tidal shorefaces, a number of significant insights have been derived, and these data are used here to develop a unified model for such systems. First, OCTFs are components of larger depositional environments, and in multiple published examples, OCTFs overlie offshore to lower shoreface successions that are similar to TMS. Consequently, we combine OCTFs and TMSs into a single tidal shoreface model where TMS (as originally described) and TMS-OCTF successions are considered as variants along the wave-tide continuum. Second, tidal shoreface successions are preferentially preserved in low- to moderate-wave energy environments and in progradational to aggradational systems. It is probably difficult to distinguish tidal shorefaces from their storm-dominated counterparts. Third, tidal shorefaces, including both TMSs and OCTFs, should exhibit tidally modulated storm deposits, reflecting variation in storm-wave energy at the sea floor resulting from the rising and falling tide. They may also exhibit interbedding of tidally generated structures (e.g. double mud drapes or bidirectional current ripples), deposited under fairweather conditions, and storm deposits (e.g. hummocky cross-stratification) through the lower shoreface and possibly into the upper shoreface.The development of the tidal shoreface model sheds light on the limitations of the presently accepted wave-tide-river classification scheme of coastal environments and a revised scheme is presented. In particular, tidal flats are components of larger depositional systems and can be identified in the rock record only in settings where intertidal and supratidal deposits are preserved; consequently, they should not represent the tide-dominated end-member of coastal systems. Instead, we suggest that tide-dominated embayments should occupy this apex. Tide-dominated embayments exhibit limited wave and river influence and include a wide range of geomorphological features typically associated with tidal processes, including tidal channels, bars and flats.Les systèmes de dépôts côtiers sont normalement classés en fonction de l’apport relatif des processus liés à la houle, aux marées et aux rivières. Si les environnements dominés par la houle et les rivières sont bien caractérisés, les environnements le long du continuum houle-marée sont relativement mal compris, ce qui limite la fiabilité et l’utilité des systèmes de classification des côtes. Deux modèles d’avant-plages tidales, les estrans ouverts (open-coast tidal flats; OCTF) et les avant-plages modulées par la marée (tidally modulated shoreface; TMS), ont été introduits pour les milieux côtiers mixtes, houle-marée. Suite à près de deux décennies de recherche sur les avant-plages tidales, un certain nombre d’informations importantes ont été obtenues et ces données sont utilisées ici pour développer un modèle unifié pour ces systèmes. Tout d’abord, les OCTF sont les composants de systèmes de dépôt plus vastes et, dans de nombreux exemples publiés, les OCTF recouvrent des successions sédimentaires allant du large à l’avant-plage inférieure, similaires à celle des TMS. Par conséquent, nous combinons les OCTF et les TMS en un seul modèle d’avant-plage tidale où les TMS (tel que décrit à l’origine) et les successions TMS-OCTF sont considérés comme des variantes le long du continuum houle-marée. Deuxièmement, les successions d’avant-plages tidales sont préférentiellement préservées dans des environnements ayant une houle faible à modérée et dans des systèmes progradant et aggradant. Il est probablement difficile de distinguer les avant-plages tidales de leurs homologues dominés par les tempêtes. Troisièmement, les avant-plages tidales, incluant à la fois les TMS et les OCTF devraient présenter des dépôts de tempête modulés par la marée, reflétant ainsi la variation de l’énergie des vagues de tempête sur le fond marin liée à la marée montante et descendante. Les avant-plages tidales peuvent également présenter une interstratification de structures générées par la marée (par exemple, des doubles drapages argileux ou des rides de courants bidirectionnelles) déposées pendant des conditions de beau temps, et des dépôts de tempête (par exemple, des stratifications en mamelons) au niveau de l’avant-plage inférieure et éventuellement de l’avant-plage supérieure.Le développement du modèle d’avant-plage tidale met en lumière les limites de la classification tripartite (houle-marée-rivière) des environnements côtiers actuellement acceptée et une classification révisée est présentée. En particulier, les OCTF et les estrans sont des composantes de systèmes dedépôt plus importants et ne peuvent être identifiés que dans le registre sédimentaire dans les milieux où les dépôts intertidaux et supratidaux sont préservés; par conséquent, ils ne devraient pas représenter le membre extrême des systèmes côtiers dominé par la marée. Nous suggérons plutôt que les baies dominées par la marée occupent cette place. Les baies dominées par les marées présentent une influence limitée des vagues et des rivières et comprennent un large éventail de caractéristiques géomorphologiques généralement associées aux processus de marée, notamment des chenaux, des barres et des platiers tidaux

    Interplay of tidal and fluvial processes in an early Pleistocene, delta-fed, strait margin (Calabria, Southern Italy)

    Get PDF
    The architecture and morphodynamics of modern and ancient tidal straits and in particular the deposits of strait-margin zones, have been significantly understudied compared to other marginal marine settings, even though many reservoirs in the North Sea and the Norwegian Continental Shelf are developed in narrow grabens or seaways. This paper presents a detailed sedimentological and stratigraphic analysis of an early Pleistocene marginal-marine succession deposited along the northern margin of the Siderno paleostrait (southern Italy). This area represents an excellent case study of sedimentation along a tidal strait margin, interpreted to record the interaction of fluvial and tidal processes. Here, syn-depositional tectonics produced a complex coastal morphology, significantly influencing sedimentation and hydrodynamic processes. Along the strait margin, the emplacement of an isolated tectonic high (Piano Fossati) created a ca. 3.5 km-wide local passageway. This morpho-structural element induced interplays between fluvio-deltaic processes (fed from the northern strait margin) and tidal current reworking (active within the marine strait).The field-based facies analysis reported here documents an initial stage of non-tidal shallow-marine sedimentation across the strait. A subsequent regression caused river-generated hyperpycnal flows and the transfer of large volumes of pebbly and shelly sandstones into deeper water. Tidal currents became amplified in the strait, and, in the delta-front area, they were able to rework river-derived sediments generating large dune fields. Following the local tidal transport pathway, strong tidal currents skewed the delta front (causing it to be asymmetrical) and elongated sand bodies in a direction parallel to the marine strait axis. Differently from the classical tide-influenced deltas in which onshore-offshore tidal flow predominates, coast-parallel deflection and strong asymmetry of delta-front deposits is a typical feature of deltas entering tide-dominated seaways and straits, where strong tidal currents are capable of dispersing large volumes of sand for significant distances along the coast and along the strait axis. This process became progressively enhanced during the following transgression, when tide-modulated currents reworked biocalcarenitic sands over the previous delta deposits, generating southeasterly migrating dunes. At the end of the transgression, strandplain deposits formed in this area. This last stage of sedimentation was followed by a dramatic regional-scale structural uplift, which ended any marine circulation within the strait. This work provides new insights on sedimentation in a tide-dominated strait, and helps to predict sandbody distribution along the strait margin and axis. These findings can be applied to any other setting characterized by a narrow (possibly structurally-confined) basin dominated by tidal currents

    Decoupling seasonal fluctuations in fluvial discharge from the tidal signature in ancient deltaic deposits: an example from the Neuquén Basin, Argentina

    Get PDF
    Fluvial discharge fluctuations are a fundamental characteristic of almost all modern rivers and can produce distinctive deposits that are rarely described from ancient fluvial or mixed-energy successions. Large-scale outcrops from the Middle Jurassic Lajas Formation (Argentina) expose a well-constrained stratigraphic succession of marginal-marine deposits with a strong fluvial influence and well-known tidal indicators. The studied deposits show decimetre-scale interbedding of coarser- and finer-grained facies with mixed fluvial and tidal affinities. The alternation of these two types of beds forms non-cyclic successions that are interpreted to be the result of seasonal variation in river discharge, rather than regular and predictable changes in current velocity caused by tides. Seasonal bedding is present in bar deposits that form within or at the mouth of minor and major channels. Seasonal bedding is not preserved in channel thalweg deposits, where river flood processes were too powerful, or in floodplain, muddy interdistributary-bay, prodelta and transgressive deposits, where the river signal was weak and sporadic. The identification of sedimentary facies characteristic of seasonal river discharge variations is important for accurate interpretation of ancient deltaic process regime

    Mixed siliciclastic-carbonate-evaporite sedimentation in an arid eolian landscape: The Khor Al Adaid tide-dominated coastal embayment, Qatar

    Get PDF
    The Khor Al Adaid embayment of southern Qatar represents a unique shallow-water mixed siliciclastic‑carbonate coastal depositional system that developed in a hyper-arid climatic setting over the past 6000 years. The embayment, which was formed during the Flandrian transgression as a result of flooding across a partially fault-controlled incised fluvial drainage, is supplied by quartz-rich sands delivered by wind-blown dunes migrating southward across the surface of Qatar. These offshore-migrating eolian-derived sediments are being redistributed by tidal currents in an otherwise low-energy coastal zone, where in situ formation of carbonate mud and a low-diversity skeletal assemblage is ongoing within salinity-restricted environments. Three depositional sectors are delineated: 1) an energetic, linear, fault-controlled Entrance Channel into which the eolian dunes spill directly; 2) a relatively deep (up to 20 m) Outer Lagoon, interpreted to represent a flooded karst-collapse structure; and 3) a sprawling, low-energy, shallow (<2 m) Inner Lagoon occupying low-lying areas between deflated eolian dunes.Physical oceanographic modeling, integrating multi-seasonal current meter and tidal gage measurements, demonstrates tidal current flow velocities are relatively high in both the Entrance Channel and at the constricted entrance to the Inner Lagoon. Associated flow expansion into less confined areas results in deposition of the eolian-derived sands as flood-tidal deltas, one in the Outer, and two in the Inner Lagoon. A weakly-developed ebb-tidal delta occurs where the Entrance Channel debouches into the Arabian Gulf. Flood-tide dominance is also apparent in Entrance Channel deposits, where sand accumulates in seaward-terminating “ebb barbs” along the margins of the flood-dominant thalweg. Such flood-tide dominance of the thalweg is unusual and likely reflects the absence of river discharge. Evidence of significant inverse estuarine circulation (seaward flow of a brine along the embayment floor) is mostly absent in spite of the landward increase of salinity, where concentrations reach more than double normal seawater salinity in the Inner Lagoon. Modeling results show that seaward-flowing brines formed in the Inner Lagoon are trapped in the relatively deep Outer Lagoon, and that mixing by tidal currents in the energetic Entrance Channel precludes the formation of vertical density gradients there. Because siliciclastic mud is essentially absent, and most of the sediment forming the deltas consists of sand, upper intertidal deltaic deposits that would normally consist of mud are absent, resulting in the flood-tide deltas having a pronounced lobate geometry similar to that of fluvial deltas formed predominantly of sand.Away from tidal deltas, low-energy lagoons are floored by carbonate mud of local production, with minor gypsum precipitating in the Inner Lagoon. Wind-generated waves only locally influence sedimentation, forming complex nearshore bars along some lagoonal shorelines. The overall landward increase in salinity is accompanied by a decrease in the diversity of benthic fauna and their skeletal remains. A fairly diverse faunal assemblage is observed in the Entrance Channel near the Arabian Gulf, including colonial corals, whereas the inner lagoon assemblage is dominated gastropods belonging to Pirenella cingulata. The remnants of large eolian dunes are preserved in the low-energy setting of the Inner Lagoon, segmenting the waterbody, and locally increasing restriction. The sedimentology of the arid-zone coastal Khor Al Adaid embayment may serve as an analogue for environmental settings that were perhaps more commonplace in arid zones of flooded continents during greenhouse times

    Nicoya Peninsula, Costa Rica: A single suite of Caribbean oceanic plateau magmas

    Get PDF
    The pre‐Tertiary oceanic crust exposed on the west coast of Costa Rica has been broadly referred to as the Nicoya Complex. This study was designed to determine the age of the Nicoya Complex in the Nicoya Peninsula, Playa Jacó, and the Quepos Peninsula using 40Ar‐39Ar radiometric dating and to assess the petrologic relationships between the different localities using major element, trace element, and Sr, Nd, Pb isotopic data. Radiometric ages of basalts and diabases from the Nicoya Peninsula are 88–90 Ma (with a weighted mean of 88.5 Ma), and those of two intrusive rocks (a gabbro and plagiogranite) are both 83–84 Ma. The combined geochemical data indicate that the sampled Nicoya Peninsula rocks belong to a single suite related by fractional crystallization of similar parental magmas. Nd and Pb isotopic ratios indicate a common mantle source distinct from that of mid‐ocean ridge basalts. Both the age and composition of the Nicoya rocks are consistent with the idea that they are a part of the Caribbean Cretaceous oceanic plateau [Donnelly, 1994]. The Jacó lavas are geochemically similar to the Nicoya Peninsula suite, and a single age of 84 Ma is identical to the age of the Nicoya Peninsula intrusives. The one analyzed Quepos basalt has a radiometric age of ∼64 Ma, and it is enriched in incompatible elements relative to the Nicoya rocks. Similarities in Nd and Pb isotopic ratios indicate that the Quepos and Nicoya/Jacó lavas were derived from a similar mantle source to that which produced the Nicoya rocks, possibly the Galapagos plume

    High-K volcanism in the Afyon region, western Turkey: from Si-oversaturated to Si-undersaturated volcanism

    Get PDF
    Volcanic rocks of the Afyon province (eastern part of western Anatolia) make up a multistage potassic and ultrapotassic alkaline series dated from 14 to 12 Ma. The early-stage Si-oversaturated volcanic rocks around the Afyon city and further southward are trachyandesitic volcanic activity (14.23 ± 0.09 Ma). Late-stage Si-undersaturated volcanism in the southernmost part of the Afyon volcanic province took place in three episodes inferred from their stratigraphic relationships and ages. Melilite– leucitites (11.50 ± 0.03 Ma), spotted rachyandesites, tephryphonolites and lamproites (11.91 ± 0.13 Ma) formed in the first episode; trachyandesites in the second episode and finally phonotephrites, phonolite, basaltic trachyandesites and nosean-bearing trachyandesites during the last episode. The parameter Q [normative q-(ne + lc + kls + ol)] of western Anatolia volcanism clearly decreased southward with time becoming zero in the time interval 10–15 Ma. The magmatism experienced a sudden change in the extent of Si saturation after 14 Ma, during late-stage volcanic activity of Afyon volcanic province at around 12 Ma, though there was some coexistence of Si-oversaturated and Si-undersaturated magmas during the whole life of Afyon volcanic province

    Training future generations to deliver evidence-based conservation and ecosystem management

    Get PDF
    1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)
    corecore