22 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    The role of monitoring and evaluation to ensure functional access to community-based early diagnosis and treatment in a malaria elimination programme in Eastern Myanmar.

    No full text
    Background:&nbsp;Improving access to early diagnosis and treatment (EDT) has increasingly proven to be a major contributor to decreasing malaria incidence in low-transmission settings. The Malaria Elimination Task Force (METF) has deployed malaria posts set up in Eastern Myanmar, providing free uninterrupted community-based access to EDT in more than 1200 villages. Ensuring high quality services are provided by these malaria posts is essential to reaching elimination targets. The present study aimed to determine the functionality of the malaria posts in the METF programme. Methods:&nbsp;This report analysed routinely collected data (weekly reports, individual consultation, diagnostic test quality control) and data collected specifically during monitoring and evaluation visits using descriptive statistics and univariate logistic regression. The presence of major dysfunctions (stock-outs and reported closing; likely to impair the ability of the population to access EDT) or minor dysfunctions (no formal METF training, lack of regular salary, forms and manual not on-site, and low frequency of supervisor visits) and the ability to anticipate dysfunctions through analysis of weekly reports were assessed. Results:&nbsp;A total of 65% of malaria posts had no major dysfunction identified during monitoring and evaluation visits, while 86% of malaria posts were fully stocked with tests and medicines used for treatment. Diagnosis was correctly conducted with few false positives and rare mis-speciation of results. Malaria post worker knowledge of malaria treatments showed few gaps, mostly in the treatment of more complex presentations. Malaria posts were well utilized in the population, with 94% of consultations occurring within the first 3&nbsp;days of fever. In the regression analysis, reported stock-outs and delayed weekly reports were associated with observed major and minor dysfunctions in monitoring and evaluation visits, emphasizing the need to reinforce support to malaria post supervisors, who were responsible for the local logistics of supply and data transmission and day-to-day supervision. Conclusion:&nbsp;The malaria posts operating under the METF programme perform to a high standard, with the majority offering uninterrupted access to diagnosis and treatment, and high service uptake in the villages serviced by the programme. However, programme operations can be strengthened by increasing malaria post supervisor visits and re-training malaria post workers.</p

    Advances in titanium on aluminium alloys cold spray coatings

    No full text
    Cold gas dynamic spraying (CGDS) is an emerging technique that involves the surface modification in order to provide enhanced surface properties on material substrates. Particles, with size in the range of 1–50 μm, are accelerated by a supersonic jet gas up to 1200 m/s and impact on the substrate surface. Under specific conditions, the metal powders undergo a severe plastic deformation and adhere to the substrate. In the last decades, the cold spraying of several materials, like copper, aluminium and iron, has been widely explored providing optimal processing windows for a wide range of material pairs. Titanium and its alloys are finding a widespread use in many strategic industries, namely, aeronautic and aerospace field, due to the lightweight, high corrosion resistance and compatibility with polymer-reinforced composites, as well as in the biomedical sector, due to their biocompatibility. However, the high cost of raw materials and the manufacturing issues put severe restrictions to their wider use. On the other hand, replacement of titanium bulk with multilayer material, consisting in a cold sprayed titanium coating on aluminium components, could be a promising alternative and an advantageous trade-off between the cost compression and the higher surface properties of titanium alloy. The present chapter deals with the analysis of the deposition of pure titanium coatings on aluminium alloy substrate by means of low-pressure cold gas spray technique and deals also with the study of the properties of multilayer material. A post-deposition process to further improve the properties of the coating itself was also analysed

    Active submarine eruption of boninite in the northeastern Lau Basin

    No full text
    Subduction of oceanic crust and the formation of volcanic arcs above the subduction zone are important components in Earth’s geological and geochemical cycles. Subduction consumes and recycles material from the oceanic plates, releasing fluids and gases that enhance magmatic activity, feed hydrothermal systems, generate ore deposits and nurture chemosynthetic biological communities. Among the first lavas to erupt at the surface from a nascent subduction zone are a type classified as boninites. These lavas contain information about the early stages of subduction, yet because most subduction systems on Earth are old and well-established, boninite lavas have previously only been observed in the ancient geological record. Here we observe and sample an active boninite eruption occurring at 1,200 m depth at the West Mata submarine volcano in the northeast Lau Basin, southwest Pacific Ocean. We find that large volumes of H2O, CO2 and sulphur are emitted, which we suggest are derived from the subducting slab. These volatiles drive explosive eruptions that fragment rocks and generate abundant incandescent magma-skinned bubbles and pillow lavas. The eruption has been ongoing for at least 2.5 years and we conclude that this boninite eruption is a multi-year, low-mass-transfer-rate eruption. Thus the Lau Basin may provide an important site for the long-term study of submarine volcanic eruptions related to the early stages of subduction
    corecore