2,372 research outputs found

    A direct image of the obscuring disk surrounding an active galactic nucleus

    Get PDF
    Active galactic nuclei (AGN) are generally accepted to be powered by the release of gravitational energy in a compact accretion disk surrounding a massive black hole. Such disks are also necessary to collimate powerful radio jets seen in some AGN. The unifying classification schemes for AGN further propose that differences in their appearance can be attributed to the opacity of the accreting material, which may obstruct our view of the central region of some systems. The popular model for the obscuring medium is a parsec-scale disk of dense molecular gas, although evidence for such disks has been mostly indirect, as their angular size is much smaller than the resolution of conventional telescopes. Here we report the first direct images of a pc-scale disk of ionised gas within the nucleus of NGC 1068, the archetype of obscured AGN. The disk is viewed nearly edge-on, and individual clouds within the ionised disk are opaque to high-energy radiation, consistent with the unifying classification scheme. In projection, the disk and AGN axes align, from which we infer that the ionised gas disk traces the outer regions of the long-sought inner accretion disk.Comment: 14 pages, LaTeX, PSfig, to appear in Nature. also available at http://hethp.mpe-garching.mpg.de/Preprint

    The X-ray emission lines in GRB afterglows: the evidence for the two-component jet model

    Full text link
    Recently, X-ray emission lines have been observed in X-ray afterglows of several γ\gamma-ray bursts. It is a major breakthrough for understanding the nature of the progenitors. It is proposed that the X-ray emission lines can be well explained by the Geometry-Dominated models, but in these models the illuminating angle is much larger than that of the collimated jet of the γ\gamma-ray bursts(GRBs). For GRB 011211, we obtain the illuminating angle is about θ45\theta\sim45^{\circ}, while the angle of GRB jet is only 3.63.6^{\circ}, so we propose that the outflow of the GRBs with emission lines should have two distinct components. The wide component illuminates the reprocessing material, and produces the emission lines, while the narrow one produces the γ\gamma-ray bursts. The observations show that the energy for producing the emission lines is higher than that of the GRBs. In this case, when the wide component dominates the afterglows, a bump will appear in the GRBs afterglows. For GRB 011211, the emergence time of the bump is less than 0.05 days after the GRB, it is obviously too early for the observation to catch it. With the presence of the X-ray emission lines there should also be a bright emission component between the UV and the soft X-rays. These features can be tested by the SwiftSwift satellite in the near future.Comment: 10 pags, 1 figure, ChJAA in pres

    Constraining GRB Emission Physics with Extensive Early-Time, Multiband Follow-up

    Get PDF
    Understanding the origin and diversity of emission processes responsible for Gamma-ray Bursts (GRBs) remains a pressing challenge. While prompt and contemporaneous panchromatic observations have the potential to test predictions of the internal-external shock model, extensive multiband imaging has been conducted for only a few GRBs. We present rich, early-time, multiband datasets for two \swift\ events, GRB 110205A and GRB 110213A. The former shows optical emission since the early stages of the prompt phase, followed by the steep rising in flux up to ~1000s after the burst (tαt^{-\alpha} with α=6.13±0.75\alpha=-6.13 \pm 0.75). We discuss this feature in the context of the reverse-shock scenario and interpret the following single power-law decay as being forward-shock dominated. Polarization measurements, obtained with the RINGO2 instrument mounted on the Liverpool Telescope, also provide hints on the nature of the emitting ejecta. The latter event, instead, displays a very peculiar optical to near-infrared lightcurve, with two achromatic peaks. In this case, while the first peak is probably due to the onset of the afterglow, we interpret the second peak to be produced by newly injected material, signifying a late-time activity of the central engine.Comment: 48 pages,11 figures, 24 tables. Accepted to The Astrophysical Journa

    Effects of sulfate starvation on agar polysaccharides of Gracilaria species (Gracilariaceae, Rhodophyta) from Morib, Malaysia

    Get PDF
    The effects of sulfate starvation on the agar characteristics of Gracilaria species was investigated by culturing two red algae from Morib, Malaysia, Gracilaria changii and Gracilaria salicornia in sulfate-free artificial seawater for 5 days. The seaweed samples were collected in October 2012 and March 2013, periods which have significant variation in the amount of rainfall. The agar yields were shown to be independent of sulfate availability, with only 0.60–1.20 % increment in treated G. changii and 0.31–1.40 % increment in treated G. salicornia while their gel strengths did not increase significantly (approximately 5–7 %) after sulfate starvation for both species. The gelling and melting temperatures did not vary between control and treated samples from both species, except for the treated G. changii collected in March 2013. The gel syneresis index of G. salicornia collected in March 2013 increased significantly after sulfate deprivation. Sulfate starvation introduced some variations in the content of 3, 6-anhydrogalactose and total sulfate esters, but the changes did not have a pronounced effect on the physical properties of agar

    Tracing the cosmic growth of supermassive black holes to z~3 with Herschel

    Get PDF
    We study a sample of Herschel selected galaxies within the Great Observatories Origins Deep Survey-South and the Cosmic Evolution Survey fields in the framework of the Photodetector Array Camera and Spectrometer (PACS) Evolutionary Probe project. Starting from the rich multiwavelength photometric data sets available in both fields, we perform a broad-band spectral energy distribution decomposition to disentangle the possible active galactic nucleus (AGN) contribution from that related to the host galaxy. We find that 37 per cent of the Herschel-selected sample shows signatures of nuclear activity at the 99 per cent confidence level. The probability of revealing AGN activity increases for bright (L 1−1000 > 10 11 L ? ) star-forming galaxies at z > 0.3, becoming about 80 per cent for the brightest (L 1−1000 > 10 12 L ? ) Infrared (IR) galaxies at z≥1. Finally, we reconstruct the AGN bolometric luminosity function and the supermassive black hole growth rate across cosmic time up to z ∼ 3 from a far-IR perspective. This work shows general agreement with most of the panchromatic estimates from the literature, with the global black hole growth peaking at z ∼ 2 and reproducing the observed local black hole mass density with consistent values of the radiative efficiency Erad (∼0.07)

    Monte Carlo Simulations of Star Clusters - VII. The globular cluster 47 Tuc

    Full text link
    We describe Monte Carlo models for the dynamical evolution of the massive globular cluster 47 Tuc (NGC 104). The code includes treatments of two-body relaxation, most kinds of three- and four-body interactions involving primordial binaries and those formed dynamically, the Galactic tide, and the internal evolution of both single and binary stars. We arrive at a set of initial parameters for the cluster which, after 12Gyr of evolution, gives a model with a fairly satisfactory match to surface brightness and density profiles, the velocity dispersion profile, the luminosity function in two fields, and the acceleration of pulsars. Our models appear to require a relatively steep initial mass function for stars above about turnoff, with an index of about 2.8 (where the Salpeter mass function has an index of 2.35), and a relatively flat initial mass function (index about 0.4) for the lower main sequence. According to the model, the current mass is estimated at 0.9 million solar masses, of which about 34% consists of remnants. We find that primordial binaries are gradually taking over from mass loss by stellar evolution as the main dynamical driver of the core. Despite the high concentration of the cluster, core collapse will take at least another 20Gyr.Comment: 16 pages, 16 figures, revised version submitted to MNRA
    corecore