2,078 research outputs found

    X-ray absorption by Broad Line Region Clouds in Mrk 766

    Full text link
    We present a new analysis of a 9-day long XMM-Newton monitoring of the Narrow Line Seyfert 1 galaxy Mrk 766. We show that the strong changes in spectral shape which occurred during this observation can be interpreted as due to Broad Line Region clouds crossing the line of sight to the X-ray source. Within the occultation scenario, the spectral and temporal analysis of the eclipses provides precise estimates of the geometrical structure, location and physical properties of the absorbing clouds. In particular, we show that these clouds have cores with column densities of at least a few 10^23 cm^-2 and velocities in the plane of the sky of the order of thousands km/s. The three different eclipses monitored by XMM-Newton suggest a broad range in cloud velocities (by a factor ~4-5). Moreover, two iron absorption lines clearly associated with each eclipse suggest the presence of highly ionized gas around the obscuring clouds, and an outflow component of the velocity spanning from 3,000 to 15,000 km/sComment: 10 pages, 7 figures. Accepted for publication in MNRA

    The XMM-Newton long look of NGC 1365: uncovering of the obscured X-ray source

    Get PDF
    We present an analysis of the extreme obscuration variability observed during an XMM–Newton 5-d continuous monitoring of the active galactic nuclei (AGN) in NGC 1365. The source was in a reflection-dominated state in the first ∼1.5 d, then a strong increase in the 7–10 keV emission was observed in ∼10 h, followed by a symmetric decrease. The spectral analysis of the different states clearly shows that this variation is due to an uncovering of the X-ray source. From this observation, we estimate a size of the X-ray source DS < 1013 cm, a distance of the obscuring clouds R∼ 1016 cm and a density n∼ 1011 cm−3. These values suggest that the X-ray absorption/reflection originates from the broad-line region clouds. This is also supported by the resolved width of the iron narrow Kα emission line, consistent with the width of the broad Hβ line

    Chandra monitoring of UGC 4203: the structure of the X-ray absorber

    Full text link
    We present a Chandra monitoring campaign of the highly variable Seyfert galaxy UGC 4203 (the "Phoenix Galaxy") which revealed variations in the X-ray absorbing column density on time scales of two weeks. This is the third, clear case, after NGC 1365 and NGC 7582, of dramatic N_H variability on short time scales observed in a "changing look" source, i.e. an AGN observed in the past in both a reflection-dominated and a Compton-thin state. The inferred limits on the distance of the X-ray absorber from the center suggest that the X-ray "torus" could be one and the same with the broad emission line region. This scenario, first proposed for an "ad-hoc" picture for NGC 1365, may be the common structure of the circumnuclear medium in AGN.Comment: 5 Pages, 4 figures. Accepted for publication in MNRAS. Missing references added and typos correcte

    "Comets" orbiting a black hole

    Full text link
    We use a long (300 ksec), continuous Suzaku X-ray observation of the active nucleus in NGC1365 to investigate the structure of the circumnuclear BLR clouds through their occultation of the X-ray source. The variations of the absorbing column density and of the covering factor indicate that the clouds surrounding the black hole are far from having a spherical geometry (as sometimes assumed), instead they have a strongly elongated and cometary shape, with a dense head (n=10^11 cm^-3) and an expanding, dissolving tail. We infer that the cometary tails must be longer than a few times 10^13 cm and their opening angle must be smaller than a few degrees. We suggest that the cometary shape may be a common feature of BLR clouds in general, but which has been difficult to recognize observationally so far. The cometary shape may originate from shocks and hydrodynamical instabilities generated by the supersonic motion of the BLR clouds into the intracloud medium. As a consequence of the mass loss into their tail, we infer that the BLR clouds probably have a lifetime of only a few months, implying that they must be continuously replenished. We also find a large, puzzling discrepancy (two orders of magnitude) between the mass of the BLR inferred from the properties of the absorbing clouds and the mass of the BLR inferred from photoionization models; we discuss the possible solutions to this discrepancy.Comment: Accepted for publication in A&A. 11 pages, 9 figure

    The structure of AGNs from X-ray absorption variability

    Full text link
    We present new evidence of X-ray absorption variability on time scales from a few hours to a few days for several nearby bright AGNs. The observed N_H variations imply that the X-ray absorber is made of clouds eclipsing the X-ray source with velocities in excess of 10^3 km/s, and densities, sizes and distances from the central black hole typical of BLR clouds. We conclude that the variable X-ray absorption is due to the same clouds emitting the broad emission lines in the optical/UV. We then concentrate on the two highest signal-to-noise spectra of eclipses, discovered in two long observations of NGC 1365 and Mrk 766, and we show that the obscuring clouds have a cometary shape, with a high density head followed by a tail with decreasing N_H. Our results show that X-ray time resolved spectroscopy can be a powerful way to directly measure the physical and geometrical properties of BLR clouds.Comment: 8 Pages, 5 figures. Proceedings of IAU Symposium 267 "Co-Evolution of Central Black Holes and Galaxies
    corecore