4,538 research outputs found
The Sunyaev-Zel'dovich effects from a cosmological hydrodynamical simulation: large-scale properties and correlation with the soft X-ray signal
Using the results of a cosmological hydrodynamical simulation of the
concordance LambdaCDM model, we study the global properties of the
Sunyaev-Zel'dovich (SZ) effects, both considering the thermal (tSZ) and the
kinetic (kSZ) component. The simulation follows gravitation and gas dynamics
and includes also several physical processes that affect the baryonic
component, like a simple reionization scenario, radiative cooling, star
formation and supernova feedback. Starting from the outputs of the simulation
we create mock maps of the SZ signals due to the large structures of the
Universe integrated in the range 0 < z < 6. We predict that the Compton
y-parameter has an average value of (1.19 +/- 0.32) 10^-6 and is lognormally
distributed in the sky; half of the whole signal comes from z < 1 and about 10
per cent from z > 2. The Doppler b-parameter shows approximately a normal
distribution with vanishing mean value and a standard deviation of 1.6 10^-6,
with a significant contribution from high-redshift (z > 3) gas. We find that
the tSZ effect is expected to dominate the primary CMB anisotropies for l >~
3000 in the Rayleigh-Jeans limit, while interestingly the kSZ effect dominates
at all frequencies at very high multipoles (l >~ 7 10^4). We also analyse the
cross-correlation between the two SZ effects and the soft (0.5-2 keV) X-ray
emission from the intergalactic medium and we obtain a strong correlation
between the three signals, especially between X-ray emission and tSZ effect
(r_l ~ 0.8-0.9) at all angular scales.Comment: 12 pages, 15 figures. Accepted for publication in MNRAS. Minor
changes, added reference
Measuring cluster peculiar velocities with the Sunyaev-Zeldovich effects: scaling relations and systematics
The fluctuations in the Cosmic Microwave Background (CMB) intensity due to
the Sunyaev-Zeldovich (SZ) effect are the sum of a thermal and a kinetic
contribution. Separating the two components to measure the peculiar velocity of
galaxy clusters requires radio and microwave observations at three or more
frequencies, and knowledge of the temperature T_e of the intracluster medium
weighted by the electron number density. To quantify the systematics of this
procedure, we extract a sample of 117 massive clusters at redshift z=0 from an
N-body hydrodynamical simulation, with 2x480^3 particles, of a cosmological
volume 192 Mpc/h on a side of a flat Cold Dark Matter model with Omega_0=0.3
and Lambda=0.7. Our simulation includes radiative cooling, star formation and
the effect of feedback and galactic winds from supernovae. We find that (1) our
simulated clusters reproduce the observed scaling relations between X-ray and
SZ properties; (2) bulk flows internal to the intracluster medium affect the
velocity estimate by less than 200 km/s in 93 per cent of the cases; (3) using
the X-ray emission weighted temperature, as an estimate of T_e, can
overestimate the peculiar velocity by 20-50 per cent, if the microwave
observations do not spatially resolve the cluster. For spatially resolved
clusters, the assumptions on the spatial distribution of the ICM, required to
separate the two SZ components, still produce a velocity overestimate of 10-20
per cent, even with an unbiased measure of T_e. Thanks to the large size of our
cluster samples, these results set a robust lower limit of 200 km/s to the
systematic errors that will affect upcoming measures of cluster peculiar
velocities with the SZ effect.Comment: 14 pages, 12 figures, MNRAS, in press. Figures 3 and 4 now contain
more recent observational data. Other minor revisions according to referee's
comment
Observational biases in Lagrangian reconstructions of cosmic velocity fields
Lagrangian reconstruction of large-scale peculiar velocity fields can be
strongly affected by observational biases. We develop a thorough analysis of
these systematic effects by relying on specially selected mock catalogues. For
the purpose of this paper, we use the MAK reconstruction method, although any
other Lagrangian reconstruction method should be sensitive to the same
problems. We extensively study the uncertainty in the mass-to-light assignment
due to luminosity incompleteness, and the poorly-determined relation between
mass and luminosity. The impact of redshift distortion corrections is analyzed
in the context of MAK and we check the importance of edge and finite-volume
effects on the reconstructed velocities. Using three mock catalogues with
different average densities, we also study the effect of cosmic variance. In
particular, one of them presents the same global features as found in
observational catalogues that extend to 80 Mpc/h scales. We give recipes,
checked using the aforementioned mock catalogues, to handle these particular
observational effects, after having introduced them into the mock catalogues so
as to quantitatively mimic the most densely sampled currently available galaxy
catalogue of the nearby universe. Once biases have been taken care of, the
typical resulting error in reconstructed velocities is typically about a
quarter of the overall velocity dispersion, and without significant bias. We
finally model our reconstruction errors to propose an improved Bayesian
approach to measure Omega_m in an unbiased way by comparing the reconstructed
velocities to the measured ones in distance space, even though they may be
plagued by large errors. We show that, in the context of observational data, a
nearly unbiased estimator of Omega_m may be built using MAK reconstruction.Comment: 29 pages, 21 figures, 6 tables, Accepted by MNRAS on 2007 October 2.
Received 2007 September 30; in original form 2007 July 2
Peculiar velocities of galaxies and clusters
We present a simple model for the shape of the distribution function of
galaxy peculiar velocities. We show how both nonlinear and linear theory terms
combine to produce a distribution which has an approximately Gaussian core with
exponential wings. The model is easily extended to study how the statistic
depends on the type of particle used to trace the velocity field (dark matter
particles, dark matter haloes, galaxies), and on the density of the environment
in which the test particles are. Comparisons with simulations suggest that our
model is accurate. We also show that the evolution of the peculiar velocities
depends on the local, rather than the global density. Since clusters populate
denser regions on average, using cluster velocities with the linear theory
scaling may lead to an overestimate of the global value of Omega. Conversely,
using linear theory with the global value of Omega to scale cluster velocities
from the initial to the present time results in an underestimate of their true
velocities. In general, however, the directions of motions of haloes are rather
well described by linear theory. Our results help to simplify models of
redshift-space distortions considerably.Comment: 18 pages, 18 figures, submitted to MNRAS 2000 July 1
The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice.
BACKGROUND: Diagnosis is the traditional basis for decision-making in clinical practice. Evidence is often lacking about future benefits and harms of these decisions for patients diagnosed with and without disease. We propose that a model of clinical practice focused on patient prognosis and predicting the likelihood of future outcomes may be more useful. DISCUSSION: Disease diagnosis can provide crucial information for clinical decisions that influence outcome in serious acute illness. However, the central role of diagnosis in clinical practice is challenged by evidence that it does not always benefit patients and that factors other than disease are important in determining patient outcome. The concept of disease as a dichotomous 'yes' or 'no' is challenged by the frequent use of diagnostic indicators with continuous distributions, such as blood sugar, which are better understood as contributing information about the probability of a patient's future outcome. Moreover, many illnesses, such as chronic fatigue, cannot usefully be labelled from a disease-diagnosis perspective. In such cases, a prognostic model provides an alternative framework for clinical practice that extends beyond disease and diagnosis and incorporates a wide range of information to predict future patient outcomes and to guide decisions to improve them. Such information embraces non-disease factors and genetic and other biomarkers which influence outcome. SUMMARY: Patient prognosis can provide the framework for modern clinical practice to integrate information from the expanding biological, social, and clinical database for more effective and efficient care
The effectiveness of public health interventions to reduce the health impact of climate change:a systematic review of systematic reviews
Climate change is likely to be one of the most important threats to public health in the coming years. Yet despite the large number of papers considering the health impact of climate change, few have considered what public health interventions may be of most value in reducing the disease burden. We aimed to evaluate the effectiveness of public health interventions to reduce the disease burden of high priority climate sensitive diseases
Measuring large-scale structure with quasars in narrow-band filter surveys
We show that a large-area imaging survey using narrow-band filters could
detect quasars in sufficiently high number densities, and with more than
sufficient accuracy in their photometric redshifts, to turn them into suitable
tracers of large-scale structure. If a narrow-band optical survey can detect
objects as faint as i=23, it could reach volumetric number densities as high as
10^{-4} h^3 Mpc^{-3} (comoving) at z~1.5 . Such a catalog would lead to
precision measurements of the power spectrum up to z~3-4. We also show that it
is possible to employ quasars to measure baryon acoustic oscillations at high
redshifts, where the uncertainties from redshift distortions and nonlinearities
are much smaller than at z<1. As a concrete example we study the future impact
of J-PAS, which is a narrow-band imaging survey in the optical over 1/5 of the
unobscured sky with 42 filters of ~100 A full-width at half-maximum. We show
that J-PAS will be able to take advantage of the broad emission lines of
quasars to deliver excellent photometric redshifts, \sigma_{z}~0.002(1+z), for
millions of objects.Comment: Matches version published in MNRAS (2012
Kinetoplastids:related protozoan pathogens, different diseases
Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better
The Baryon Oscillation Spectroscopic Survey of SDSS-III
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the
scale of baryon acoustic oscillations (BAO) in the clustering of matter over a
larger volume than the combined efforts of all previous spectroscopic surveys
of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as
i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7.
Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000
quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5.
Early results from BOSS include the first detection of the large-scale
three-dimensional clustering of the Lyman alpha forest and a strong detection
from the Data Release 9 data set of the BAO in the clustering of massive
galaxies at an effective redshift z = 0.57. We project that BOSS will yield
measurements of the angular diameter distance D_A to an accuracy of 1.0% at
redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the
same redshifts. Forecasts for Lyman alpha forest constraints predict a
measurement of an overall dilation factor that scales the highly degenerate
D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey
is complete. Here, we provide an overview of the selection of spectroscopic
targets, planning of observations, and analysis of data and data quality of
BOSS.Comment: 49 pages, 16 figures, accepted by A
The Halo Occupation Distribution of Black Holes: Dependence on Mass
We investigate the halo occupation distribution (HOD) of black holes within a
hydrodynamic cosmological simulation that directly follows black hole growth.
Similar to the HOD of galaxies/subhalos, we find that the black hole occupation
number can be described by the form N_BH proportional to 1+ (M_Host)^alpha
where alpha evolves mildly with redshift indicating that a given mass halo
(M_Host) at low redshift tends to host fewer BHs than at high redshift (as
expected as a result of galaxy and BH mergers). We further divide the
occupation number into contributions from black holes residing in central and
satellite galaxies within a halo. The distribution of M_BH within halos tends
to consist of a single massive BH (distributed about a peak mass strongly
correlated with M_Host), and a collection of relatively low-mass secondary BHs,
with weaker correlation with M_Host. We also examine the spatial distribution
of BHs within their host halos, and find they typically follow a power-law
radial distribution (i.e. much more centrally concentrated than the subhalo
distribution). Finally, we characterize the host mass for which BH growth is
feedback dominated (e.g. star formation quenched). We show that halos with
M_Host > 3 * 10^12 M_sun have primary BHs that are feedback dominated by z~3
with lower mass halos becoming increasingly more affected at lower redshift.Comment: 10 pages, 7 figures, submitted to MNRA
- …
