4,538 research outputs found

    The Sunyaev-Zel'dovich effects from a cosmological hydrodynamical simulation: large-scale properties and correlation with the soft X-ray signal

    Get PDF
    Using the results of a cosmological hydrodynamical simulation of the concordance LambdaCDM model, we study the global properties of the Sunyaev-Zel'dovich (SZ) effects, both considering the thermal (tSZ) and the kinetic (kSZ) component. The simulation follows gravitation and gas dynamics and includes also several physical processes that affect the baryonic component, like a simple reionization scenario, radiative cooling, star formation and supernova feedback. Starting from the outputs of the simulation we create mock maps of the SZ signals due to the large structures of the Universe integrated in the range 0 < z < 6. We predict that the Compton y-parameter has an average value of (1.19 +/- 0.32) 10^-6 and is lognormally distributed in the sky; half of the whole signal comes from z < 1 and about 10 per cent from z > 2. The Doppler b-parameter shows approximately a normal distribution with vanishing mean value and a standard deviation of 1.6 10^-6, with a significant contribution from high-redshift (z > 3) gas. We find that the tSZ effect is expected to dominate the primary CMB anisotropies for l >~ 3000 in the Rayleigh-Jeans limit, while interestingly the kSZ effect dominates at all frequencies at very high multipoles (l >~ 7 10^4). We also analyse the cross-correlation between the two SZ effects and the soft (0.5-2 keV) X-ray emission from the intergalactic medium and we obtain a strong correlation between the three signals, especially between X-ray emission and tSZ effect (r_l ~ 0.8-0.9) at all angular scales.Comment: 12 pages, 15 figures. Accepted for publication in MNRAS. Minor changes, added reference

    Measuring cluster peculiar velocities with the Sunyaev-Zeldovich effects: scaling relations and systematics

    Full text link
    The fluctuations in the Cosmic Microwave Background (CMB) intensity due to the Sunyaev-Zeldovich (SZ) effect are the sum of a thermal and a kinetic contribution. Separating the two components to measure the peculiar velocity of galaxy clusters requires radio and microwave observations at three or more frequencies, and knowledge of the temperature T_e of the intracluster medium weighted by the electron number density. To quantify the systematics of this procedure, we extract a sample of 117 massive clusters at redshift z=0 from an N-body hydrodynamical simulation, with 2x480^3 particles, of a cosmological volume 192 Mpc/h on a side of a flat Cold Dark Matter model with Omega_0=0.3 and Lambda=0.7. Our simulation includes radiative cooling, star formation and the effect of feedback and galactic winds from supernovae. We find that (1) our simulated clusters reproduce the observed scaling relations between X-ray and SZ properties; (2) bulk flows internal to the intracluster medium affect the velocity estimate by less than 200 km/s in 93 per cent of the cases; (3) using the X-ray emission weighted temperature, as an estimate of T_e, can overestimate the peculiar velocity by 20-50 per cent, if the microwave observations do not spatially resolve the cluster. For spatially resolved clusters, the assumptions on the spatial distribution of the ICM, required to separate the two SZ components, still produce a velocity overestimate of 10-20 per cent, even with an unbiased measure of T_e. Thanks to the large size of our cluster samples, these results set a robust lower limit of 200 km/s to the systematic errors that will affect upcoming measures of cluster peculiar velocities with the SZ effect.Comment: 14 pages, 12 figures, MNRAS, in press. Figures 3 and 4 now contain more recent observational data. Other minor revisions according to referee's comment

    Observational biases in Lagrangian reconstructions of cosmic velocity fields

    Full text link
    Lagrangian reconstruction of large-scale peculiar velocity fields can be strongly affected by observational biases. We develop a thorough analysis of these systematic effects by relying on specially selected mock catalogues. For the purpose of this paper, we use the MAK reconstruction method, although any other Lagrangian reconstruction method should be sensitive to the same problems. We extensively study the uncertainty in the mass-to-light assignment due to luminosity incompleteness, and the poorly-determined relation between mass and luminosity. The impact of redshift distortion corrections is analyzed in the context of MAK and we check the importance of edge and finite-volume effects on the reconstructed velocities. Using three mock catalogues with different average densities, we also study the effect of cosmic variance. In particular, one of them presents the same global features as found in observational catalogues that extend to 80 Mpc/h scales. We give recipes, checked using the aforementioned mock catalogues, to handle these particular observational effects, after having introduced them into the mock catalogues so as to quantitatively mimic the most densely sampled currently available galaxy catalogue of the nearby universe. Once biases have been taken care of, the typical resulting error in reconstructed velocities is typically about a quarter of the overall velocity dispersion, and without significant bias. We finally model our reconstruction errors to propose an improved Bayesian approach to measure Omega_m in an unbiased way by comparing the reconstructed velocities to the measured ones in distance space, even though they may be plagued by large errors. We show that, in the context of observational data, a nearly unbiased estimator of Omega_m may be built using MAK reconstruction.Comment: 29 pages, 21 figures, 6 tables, Accepted by MNRAS on 2007 October 2. Received 2007 September 30; in original form 2007 July 2

    Peculiar velocities of galaxies and clusters

    Full text link
    We present a simple model for the shape of the distribution function of galaxy peculiar velocities. We show how both nonlinear and linear theory terms combine to produce a distribution which has an approximately Gaussian core with exponential wings. The model is easily extended to study how the statistic depends on the type of particle used to trace the velocity field (dark matter particles, dark matter haloes, galaxies), and on the density of the environment in which the test particles are. Comparisons with simulations suggest that our model is accurate. We also show that the evolution of the peculiar velocities depends on the local, rather than the global density. Since clusters populate denser regions on average, using cluster velocities with the linear theory scaling may lead to an overestimate of the global value of Omega. Conversely, using linear theory with the global value of Omega to scale cluster velocities from the initial to the present time results in an underestimate of their true velocities. In general, however, the directions of motions of haloes are rather well described by linear theory. Our results help to simplify models of redshift-space distortions considerably.Comment: 18 pages, 18 figures, submitted to MNRAS 2000 July 1

    The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice.

    Get PDF
    BACKGROUND: Diagnosis is the traditional basis for decision-making in clinical practice. Evidence is often lacking about future benefits and harms of these decisions for patients diagnosed with and without disease. We propose that a model of clinical practice focused on patient prognosis and predicting the likelihood of future outcomes may be more useful. DISCUSSION: Disease diagnosis can provide crucial information for clinical decisions that influence outcome in serious acute illness. However, the central role of diagnosis in clinical practice is challenged by evidence that it does not always benefit patients and that factors other than disease are important in determining patient outcome. The concept of disease as a dichotomous 'yes' or 'no' is challenged by the frequent use of diagnostic indicators with continuous distributions, such as blood sugar, which are better understood as contributing information about the probability of a patient's future outcome. Moreover, many illnesses, such as chronic fatigue, cannot usefully be labelled from a disease-diagnosis perspective. In such cases, a prognostic model provides an alternative framework for clinical practice that extends beyond disease and diagnosis and incorporates a wide range of information to predict future patient outcomes and to guide decisions to improve them. Such information embraces non-disease factors and genetic and other biomarkers which influence outcome. SUMMARY: Patient prognosis can provide the framework for modern clinical practice to integrate information from the expanding biological, social, and clinical database for more effective and efficient care

    The effectiveness of public health interventions to reduce the health impact of climate change:a systematic review of systematic reviews

    Get PDF
    Climate change is likely to be one of the most important threats to public health in the coming years. Yet despite the large number of papers considering the health impact of climate change, few have considered what public health interventions may be of most value in reducing the disease burden. We aimed to evaluate the effectiveness of public health interventions to reduce the disease burden of high priority climate sensitive diseases

    Measuring large-scale structure with quasars in narrow-band filter surveys

    Get PDF
    We show that a large-area imaging survey using narrow-band filters could detect quasars in sufficiently high number densities, and with more than sufficient accuracy in their photometric redshifts, to turn them into suitable tracers of large-scale structure. If a narrow-band optical survey can detect objects as faint as i=23, it could reach volumetric number densities as high as 10^{-4} h^3 Mpc^{-3} (comoving) at z~1.5 . Such a catalog would lead to precision measurements of the power spectrum up to z~3-4. We also show that it is possible to employ quasars to measure baryon acoustic oscillations at high redshifts, where the uncertainties from redshift distortions and nonlinearities are much smaller than at z<1. As a concrete example we study the future impact of J-PAS, which is a narrow-band imaging survey in the optical over 1/5 of the unobscured sky with 42 filters of ~100 A full-width at half-maximum. We show that J-PAS will be able to take advantage of the broad emission lines of quasars to deliver excellent photometric redshifts, \sigma_{z}~0.002(1+z), for millions of objects.Comment: Matches version published in MNRAS (2012

    Kinetoplastids:related protozoan pathogens, different diseases

    Get PDF
    Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    The Halo Occupation Distribution of Black Holes: Dependence on Mass

    Full text link
    We investigate the halo occupation distribution (HOD) of black holes within a hydrodynamic cosmological simulation that directly follows black hole growth. Similar to the HOD of galaxies/subhalos, we find that the black hole occupation number can be described by the form N_BH proportional to 1+ (M_Host)^alpha where alpha evolves mildly with redshift indicating that a given mass halo (M_Host) at low redshift tends to host fewer BHs than at high redshift (as expected as a result of galaxy and BH mergers). We further divide the occupation number into contributions from black holes residing in central and satellite galaxies within a halo. The distribution of M_BH within halos tends to consist of a single massive BH (distributed about a peak mass strongly correlated with M_Host), and a collection of relatively low-mass secondary BHs, with weaker correlation with M_Host. We also examine the spatial distribution of BHs within their host halos, and find they typically follow a power-law radial distribution (i.e. much more centrally concentrated than the subhalo distribution). Finally, we characterize the host mass for which BH growth is feedback dominated (e.g. star formation quenched). We show that halos with M_Host > 3 * 10^12 M_sun have primary BHs that are feedback dominated by z~3 with lower mass halos becoming increasingly more affected at lower redshift.Comment: 10 pages, 7 figures, submitted to MNRA
    corecore