101 research outputs found
Cooper pairing and single particle properties of trapped Fermi gases
We calculate the elementary excitations and pairing of a trapped atomic Fermi
gas in the superfluid phase. The level spectra and pairing gaps undergo several
transitions as the strength of the interactions between and the number of atoms
are varied. For weak interactions, the Cooper pairs are formed between
particles residing in the same harmonic oscillator shell. In this regime, the
nature of the paired state is shown to depend critically on the position of the
chemical potential relative to the harmonic oscillator shells and on the size
of the mean field. For stronger interactions, we find a region where pairing
occur between time-reversed harmonic oscillator states in different shells
also.Comment: Slightly revised version: Mistakes in equation references in figures
corrected. Accepted for Phys. Rev.
Ideal Gases in Time-Dependent Traps
We investigate theoretically the properties of an ideal trapped gas in a
time-dependent harmonic potential. Using a scaling formalism, we are able to
present simple analytical results for two important classes of experiments:
free expansion of the gas upon release of the trap; and the response of the gas
to a harmonic modulation of the trapping potential is investigated. We present
specific results relevant to current experiments on trapped Fermions.Comment: 5 pages, 3 eps figure
Some exact results for a trapped quantum gas at finite temperature
We present closed analytical expressions for the particle and kinetic energy
spatial densities at finite temperatures for a system of noninteracting
fermions (bosons) trapped in a d-dimensional harmonic oscillator potential. For
d=2 and 3, exact expressions for the N-particle densities are used to calculate
perturbatively the temperature dependence of the splittings of the energy
levels in a given shell due to a very weak interparticle interaction in a
dilute Fermi gas. In two dimensions, we obtain analytically the surprising
result that the |l|-degeneracy in a harmonic oscillator shell is not lifted in
the lowest order even when the exact, rather than the Thomas-Fermi expression
for the particle density is used. We also demonstrate rigorously (in two
dimensions) the reduction of the exact zero-temperature fermionic expressions
to the Thomas-Fermi form in the large-N limit.Comment: 14 pages, 4 figures include
Collisionless collective modes of fermions in magnetic traps
We present a Random-Phase-Approximation formalism for the collective spectrum
of two hyperfine species of dilute 40K atoms, magnetically trapped at zero
temperature and subjected to a repulsive s-wave interaction between atoms with
different spin projections. We examine the density-like and the spin-like
oscillation spectra, as well as the transition density profiles created by
external multipolar fields. The zero sound spectrum is always fragmented and
the density and spin channels become clearly distinguishable if the trapping
potentials acting on the species are identical. Although this distinction is
lost when these confining fields are different, at selected excitation
frequencies the transition densities may display the signature of the channel.Comment: 10 pages, 9 figure
Vortices in superfluid trapped Fermi gases at zero temperature
We discuss various aspects of the vortex state of a dilute superfluid atomic
Fermi gas at T=0. The energy of the vortex in a trapped gas is calculated and
we provide an expression for the thermodynamic critical rotation frequency of
the trap for its formation. Furthermore, we propose a method to detect the
presence of a vortex by calculating the effect of its associated velocity field
on the collective mode spectrum of the gas
Luttinger model approach to interacting one-dimensional fermions in a harmonic trap
A model of interacting one--dimensional fermions confined to a harmonic trap
is proposed. The model is treated analytically to all orders of the coupling
constant by a method analogous to that used for the Luttinger model. As a first
application, the particle density is evaluated and the behavior of Friedel
oscillations under the influence of interactions is studied. It is found that
attractive interactions tend to suppress the Friedel oscillations while strong
repulsive interactions enhance the Friedel oscillations significantly. The
momentum distribution function and the relation of the model interaction to
realistic pair interactions are also discussed.Comment: 12 pages latex, 1 eps-figure in 1 tar file, extended Appendix, added
and corrected references, new eq. (53), corrected typos, accepted for PR
Langevin equations for interacting fermions and Cooper-like pairing in trapped one-dimensional fermions
Momentum correlations in a one-dimensional equilibrium ensemble of trapped fermions, with a point interaction between particles of opposite spin have been studied. In the degenerate regime correlations were observed between fermions with opposite spins and momenta, similar to Cooper pairing. These correlations appear as soon as the temperature is below the Fermi energy, which is a much less stringent condition than that of the BCS transition proper. Calculations are carried out in both perturbative and non-perturbative regimes. To achieve the latter. it is shown that interacting fermionic dynamics may be solved as a stochastic linear transformation of Grassmann algebra generators, much in the way random c-number paths are introduced in the conventional quantum stochastics of bosons. Importantly, the method thus emerging is inherently free of the sign problem
Collisionless and hydrodynamic excitations of trapped boson-fermion mixtures
Within a scaling ansatz formalism plus Thomas-Fermi approximation, we
investigate the collective excitations of a harmonically trapped boson-fermion
mixture in the collisionless and hydrodynamic limit at low temperature. Both
the monopole and quadrupole modes are considered in the presence of spherical
as well as cylindrically symmetric traps. In the spherical traps, the frequency
of monopole mode coincides in the collisionless and hydrodynamic regime,
suggesting that it might be undamped in all collisional regimes. In contrast,
for the quadrupole mode, the frequency differs largely in these two limits. In
particular, we find that in the hydrodynamic regime the quadrupole oscillations
with equal bosonic and fermionic amplitudes generate an exact eigenstate of the
system, regardless of the boson-fermion interaction. This resembles the Kohn
mode for the dipole excitation. We discuss in some detail the behavior of
monopole and quadrupole modes as a function of boson-fermion coupling at
different boson-boson interaction strength. Analytic solutions valid at weak
and medium fermion-boson coupling are also derived and discussed.Comment: 29 pages + 7 figures, resubmitted to Physical Review
- …