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Langevin equations for interacting fermions and Cooper-like pairing
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Momentum correlations in a one-dimensional equilibrium ensemble of trapped fermions, with a point inter-
action between particles of opposite spin have been studied. In the degenerate regime correlations were
observed between fermions with opposite spins and momenta, similar to Cooper pairing. These correlations
appear as soon as the temperature is below the Fermi energy, which is a much less stringent condition than that
of the BCS transition proper. Calculations are carried out in both perturbative and non-perturbative regimes. To
achieve the latter, it is shown that interacting fermionic dynamics may be solved as a stochastic linear trans-
formation of Grassmann algebra generators, much in the way randomc-number paths are introduced in the
conventional quantum stochastics of bosons. Importantly, the method thus emerging is inherently free of the
sign problem.
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I. INTRODUCTION

A recent surge of interest in trapped ultracold atom
gases has mainly been concerned with the phenomeno
Bose-Einstein condensation@1# of bosonic atoms. More re
cently, interest has also arisen in properties of trapped fe
onic gases@2–11#. Successful cooling of40K atoms@3# and
trapping of 6Li @4# and 40K @5# atoms have been reporte
Theoretical interest has mainly been concentrated in th
areas: mean-field properties@8,9#, excitations@10#, and Coo-
per pairing and its possible manifestations@6,7,11# in trapped
Fermi gases.

There are a number of generic concepts inherent to a
cussion of degenerate Fermi-gases. First and foremost ar
concept of the Dirac sea and the associated concepts o
Fermi surface, Fermi energy, and Fermi momentum. For
teracting fermions, there is also the concept of Cooper p
ing. It is not at all clear how these concepts will manife
themselves in small trapped fermionic samples. In this pa
we seek anab initio answer to this question, by directl
calculating two-particle momentum correlations in a on
dimensional~1D! sample of trapped interacting fermions. W
consider an attractive point interaction between ‘‘spin-u
and ‘‘spin-down’’ fermions, well known in the theory of su
perconductivity. This kind of interaction may be realized in
sample of6Li atoms trapped in two different hyperfine stat
@6,7# ~so that the spin up/down terminology should not
taken literally!. We find that two-particle momentum corre
lations are peaked at momenta equalling6pF , where pF
corresponds to a classical excursion in momentum space
particle with energy equal to the Fermi energy@8#.

Correlations of particles with equal momenta may be
plained in a semiclassical way. Assume that only those at
with energies close to the the Fermi energy contribute,
that all atoms oscillate with the same amplitude. The attr
tive point interaction will then favor pairs of spin-up/spin
down atoms, oscillating in phase~co-oscillating pairs!. These
1050-2947/2001/64~6!/063409~15!/$20.00 64 0634
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pairs will contribute to the correlations of particles wi
equal momenta. However, both perturbative calculations
nonperturbative Monte Carlo simulations reveal correlatio
of particles with opposite momenta: in fact, these alwa
exceed correlations of particles with equal momenta. T
difference grows with interaction strength; moreover, t
correlations actually extend from the Fermi surface into
Dirac sea. There does not appear to exist any semiclas
mechanism capable of producing correlations between
ticles with opposite momenta. Observation of Cooper-l
momentum correlations would, therefore, be a direct ma
festation of both the quantum and the fermionic nature of
trapped atoms. Experimentally this may be achieved by fi
trapping 6Li atoms in a cigar-shaped trap and then turni
the trap off, thus allowing the atoms to propagate freely. T
Cooper-like momentum correlations should then manif
themselves as correlations in arrival times, assuming
atom detectors are placed at opposite sides of the trap a
the trap axis. It is an important observation that these co
lations appear as soon as the temperature is below the F
energy, which is a much less stringent condition than tha
the BCS transition proper@2#.

It should, however, be noted that there are serious ph
cal limitations to a 1D approximation for trapped fermion
Assuming a cigar trap, transverse motion can only be
glected if the transverse frequencies are large compare
both the temperature and to the chemical potential. This l
its the number of fermions in the trap to roughly twice t
ratio transverse to longitudinal frequency. Experimental o
servations of the 1D pseudo-Cooper-pairing thus require
very tight~‘‘needle’’! trap. In 3D, this phenomenon is subje
to further investigation.

The paper is organized as follows. We start from a gra
canonical formulation of trapped interacting fermions in S
II, then proceed with introducing first perturbative~Sec. III!,
and then nonperturbative~Sec. IV! approaches to this sys
tem. In Sec. V, we present numerical results; feasibility
observation of the pseudo-Cooper correlations and lim
©2001 The American Physical Society09-1
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tions to a 1D approach to trapped fermions are also
cussed.

Technically, our perturbative approach is the first non
nishing approximation of the well-known Matsubara d
gram techniques@12# ~although we do not use diagrams
such!. We derive perturbative corrections to a number
quantitities such as statistical sum and momentum distr
tion, and an expression for momentum correlations betw
spin-up and spin-down particles. Based on a WKB appro
mation @13# to eigenfunctions of highly excited trap state
for the latter we also derive a simplified formula valid in th
case of a highly populated trap.

The nonperturbative approach developed in this pape
an extension of the phase-space methods used for bo
@14#, enabling us to treat interacting fermionic systems. F
lowing the techniques of coherent states for Grassmann
gebras@15,16#, one may introduce fermionic pseudodistrib
tions @16#, in much the same way as is done for bosons@14#.
Equations for the pseudodistributions can also easily be
rived. The catch is that, being an element of a Grassm
algebra, a pseudodistribution is in fact a collection of 22n c
numbers, wheren is the number of fermionic states take
into account. Although the number of nonzero component
actually smaller, it remains of the order of the dimension
the Hilbert space (2n) making equations for pseudodistribu
tions impracticable for numerical methods.

For an equilibrium ensemble of trapped fermions such
we consider in this paper, the dynamics is a Matsubara-s
@12# dynamics in imaginary time~extension of our results to
real-time dynamics is straightforward!. We show that, for a
particular class of pseudodistributions, which we termB dis-
tributions, their evolution can be solved as a stochastic tra
formation of the set of the Grassmann algebra genera
Formally, it is determined by ann3n random matrix, obey-
ing a linear Itôstochastic differential equation~SDE! @17#
with multiplicative noise. The transformation matrix~ran-
dom path! is a c number, and may hence be the subject o
Monte Carlo simulation. The dimension of the fermion
path isn2 ~and 2n2 for a real-time problem!, which, except
for very smalln, is exponentially small compared to that
the Hilbert space or of the pseudodistribution itself. It
however, large compared to 2n for the bosonic paths@14#, so
that stochastic simulations of fermions are more involv
than those of bosons. On the other hand, the SDE we find
the paths is linear, and we found it more stable in simulati
than the nonlinear SDEs typical for interacting bosons t
are notorious for stability problems@14,18#.

II. THE PHYSICAL PROBLEM

We consider a grand-canonical ensemble of trapped in
acting fermions. The normalized many-bodyr matrix is
given by

r̂~t!5Z21R̂~t!, ~1!

R̂~t!5e2t(Ĥ2mN̂), Z5Tr R̂~t!, ~2!
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where t51/kBT, T is the temperature,m is the chemical
potential, N̂ is the fermion number operator, andĤ5Ĥ l

1Ĥ I is the system Hamiltonian. The linear part,H l , which
physically contains the kinetic energy and the trap potent
will be written in a general matrix form as

Ĥ l2mN̂5E dxdx8h~x,x8!@ â↑
†~x!â↑~x8!1â↓

†~x!â↓~x8!#

5â↑
†hâ↑1â↓

†hâ↓ , ~3!

where the field operatorsâ↑(x) and â↓(x) correspond to the
spin-up and spin-down states, respectively~i.e., the trap po-
tential does not depend on spin!. As an example of a nonlin-
ear interaction we consider a point interaction of fermio
with opposite spins~well known in the theory of supercon
ductivity @20#!

Ĥ I5kE dxâ↑
†~x!â↓

†~x!â↓~x!â↑~x!

5kE dxâ↑
†~x!â↑~x!â↓

†~x!â↓~x!. ~4!

Physically, such a Hamiltonian applies to, e.g.,6Li atoms
trapped in two different hyperfine states@6,7#.

Although many of our formal results hold for arbitrar
trap potentials, all physical calculations will be done for fe
mions in a 1D harmonic trap. In this case, it is convenien
introduce operators creating and annihilating spin-up~say!
fermions in akth oscillator state,âk↑

† and âk↑ , so that

â↑
†~x!5(

k
âk↑

† wk* ~x!, â↑~x!5(
k

âk↑wk~x!, ~5!

wherewk(x) are coordinate-space oscillator eigenfunctio
*dxwk(x)wk8(x)5dkk8 . For the field operators in momen
tum representation

â↑
†~p!5(

k
âk↑

† wkp* , â↑~p!5(
k

âk↑wkp , ~6!

where wkp5 i kA2p l 0 /p0 wk(pl0 /p0) are momentum-spac
oscillator eigenfunctions, *(dp/2p)wkpwk8p

* 5dkk8 , l 0

5A\/mv, andp05A\mv. Identical definitions hold for the
spin-down particles.

III. IMAGINARY-TIME PERTURBATION TECHNIQUES

A. Matsubara perturbation approach

Throughout this paper, we make use of the fact that
nonnormalized many-bodyr matrix R̂(t) may be found as a
solution to the equation,

]R̂~t!

]t
52~Ĥ2mN̂!R̂~t!, R̂~0!51. ~7!

As first shown by Matsubara@12#, Eq. ~7! can be used as a
starting point for perturbative calculations. Technically it is
9-2
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Schrödinger equation for an evolution matrix in imagina
time t52 i t. Thus all one needs to do is to take the conve
tional nonstationary perturbation approach, based on
Schrödinger equation for a real time evolution operator, a
rewrite it formally for t52 i t. In particular, one introduce
the Matsubara interaction picture by splittingR̂(t) into a
product

R̂~t!5R̂l~t!R̂I~t!, ~8!

whereR̂l(t)5e2(Ĥ l2mN̂)t. Operators in the Matsubara inte
action picture are defined as~with Â being an operator in the
Schrödinger picture!

Â~t!5R̂l
21~t!ÂR̂l~t!, Â†~t!5R̂l

21~t!Â†R̂l~t!. ~9!

For example,

â↑k~t!5e2«kta↑k , â↑k
† ~t!5e«kta↑k

† , ~10!

where «k5Ek2v/22m and Ek5(k11/2)v ~i.e., the zero
energy is eliminated from«k). Note thatÂ(t) and Â†(t)
defined via Eq.~9! are no longer Hermitian conjugate~ex-
cept att50). Note also that at-dependent operator alway
means an operator in the interaction picture, with the exc
tion of R̂(t), R̂l(t), andR̂I(t).

For an arbitrary operatorÂ,

Tr R̂~t!Â5Tr R̂l~t!R̂I~t!Â5Zl^R̂I~t!Â& l , ~11!

whereZl5Tr R̂l(t)5Tr e2(Ĥ l2mN̂)t, and

^@•••#& l5Zl
21Tr R̂l~t!@•••#, ~12!

is the quantum averaging in the interaction picture~that is,
for the corresponding linear system!. With Â51 we have,
Z5Zl^R̂l(t)& l , and hence for the quantum averaging in t
interacting system,

^@•••#&5Z21Tr R̂~t!@•••#5
^R̂I~t!@•••#& l

^R̂I~t!& l

. ~13!

Equations~7! and ~8! yield for R̂I(t),

]R̂I~t!

]t
52Ĥ I~t!RI~t!, R̂I~0!51, ~14!

whereĤ I(t)5Rl
21(t)Ĥ IRl(t). Equations~13! and~14! form

the basis of the Matsubara diagram expansion@12#. For our
purposes, however, we restrict ourselves to the first nonv
ishing approximation

R̂I~t!'12E
0

t

dt8Ĥ I~t8!. ~15!

Then,
06340
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^@•••#&5^@•••#& l~12dZ!2E
0

t

dt8^Ĥ I~t8!@•••#& l ,

~16!

wheredZ52*0
tdt8^Ĥ I(t8)& l is the relative correction to the

statistical sum.

B. Corrections to distribution and correlation functions

For trapped fermions, calculating even the first-order c
rections is somewhat of a challenge and can only be c
pleted numerically. Our immediate goal is to derive relatio
to be used in the numerics. Without the nonlinear interact
the spin-up and spin-down particles are independent, so
we have

dZ52kE
0

t

dt8E dx^n̂↑~x,t!& l^n̂↓~x,t!& l . ~17!

Employing Eqs.~5! and ~10! we find

^n̂↑~x,t!& l5^n̂↓~x,t!& l5(
k

uwk~x!u2nk[n~x!, ~18!

wherenk5(e«kt11)21 is the Fermi-Dirac distribution. Fi-
nally,

dZ52ktE dx@n~x!#2. ~19!

Similarly, the correction to the Fermi-Dirac distribution
found to be

dnk5^â↑k
† â↑k&2^â↑k

† â↑k& l

5nkH 2dZ2ktE dx n~x!@n~x!1~12nk!uwk~x!u2#J
52ktnk~12nk!E dx n~x!uwk~x!u2. ~20!

The correction to the momentum distribution is mo
complicated,

dn~p!5^â↑
†~p!â↑~p!&2^â↑

†~p!â↑~p!& l

5kE
0

t

dt8E dx n~x!K1~x,p,t8!K2~x,p,t8!,

~21!

where

K1~x,p,t8!5(
k

nke
«kt8wk* ~x!wkp , ~22!

K2~x,p,t8!5(
k

~12nk!e
2«kt8wk~x!wkp*

5K1* ~x,p,t8!u«k→2«k
. ~23!
9-3
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Note that, in the above,t8 is a variable, unliket, which is a
physical parameter.K1 and K2 depend ont8 explicitly and
on t via nk . Finally, the spin-up/spin-down momentum co
relation function reads

^n̂↑~p!,n̂↓~p8!&5^n̂↑~p!n̂↓~p8!&2^n̂↑~p!&^n̂↓~p8!&

52kE
0

t

dt8E dx K1~x,p,t8!K2~x,p,t8!

3K1~x,p8,t8!K2~x,p8,t8!. ~24!

C. Highly populated trap

In this section we use oscillator units, setting the tr
frequency equal to one. To return to normal units one sho
simply make the replacementsp→p/p0 , x→x/ l 0 , T
→kBT/\v, and m→m/\v, where l 0 and p0 were defined
shortly after Eq.~6!.

Equations~19!–~24! are of little use in the experimentall
important case of a highly populated trap,m@1. ~In our
units, the number of atoms in the trap'2m.! Our goal is,
therefore, to derive approximate formulas valid in this lim
Assuming also that the trap is ‘‘hot,’’m*T@1, we can use
the WKB approximation for the eigenfunctions@13# and re-
place summation over the levels by integration. The WK
approximation for the oscillator functions reads

wk~x!5A 2

ppE~x!
cosFpk

2
1FE~x!G , ~25!

wkp5 i kA 4

xE~p!
cosFpk

2
1FE~p!G , ~26!

where E5Ek5k11/2 and pE(j)5xE(j)5A2E2j2. The
phase can be expressed in two equivalent forms

FE~x!5E
0

x

djpE~j!5fE~x!1
xpE~x!

2
, ~27!

FE~p!5E
0

p

djxE~j!5fE~p!1
pxE~p!

2
, ~28!

wherefE(j)5arcsin(j/A2E).
It is instructive to consider what would happen to Eq.~24!

if it were integrated overp and p8. This equation contains
summation over four independent level indices, cf. Eqs.~22!
and~23!. Let k1 ,k2 ,k18 , andk28 be the level indices occurring
in K1(x,p,t8),K2(x,p,t8),K1(x,p8,t8), and K2(x,p8,t8),
respectively. On integrating Eq.~24! over p and using the
orthogonality of the momentum eigenfunctions we find th
k15k2. As well as collapsing one summation and thus si
plifying the whole expression, this also results in cance
tion of the t8-dependent exponents inK1(x,p,t8) and
K2(x,p,t8), e«k1

t8e2«k2
t8→1. The same applies to

K1(x,p8,t8) and K2(x,p8,t8): on integrating overp8 the
06340
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level summations inside these are collapsed to a single
we again find a cancellation of thet8-dependent exponents
e«k18

t8e2«k28
t8→1.

It is easy to see that the same effect of cancellation of
t8-dependent exponents may be achieved by smearing
~24! over a relatively narrow momentum intervalDp. On
inspecting Eq.~26! we find that such smearing results
uk12k2u&Dk, where~with 2k5k11k2 andE5Ek)

DkDp
]2

]k]pE0

p

djxk11/2~j!5
DkDp

xE~p!
;1. ~29!

The momentum resolution is specified byDp2/25pDp;T,
hence, for the important case of Fermi momentum,p;pF

5A2m, xm(p);AT, andDk;Am/T. Effective cancellation
of the t8-dependent exponents thus requirestDk;Am/T3

!1.
In what follows we will assume that

m*T@m1/3,1. ~30!

Under these conditions, the averaging over the momenta
be introduced without actually losing resolution. Implyin
this averaging, the integrand in Eq.~24! becomes indepen
dent of t8. Rather than discarding thet8-dependent expo-
nents, we find it convenient to formally preserve them wh
settingt85t/2. This makes the weight factors occurring
K1 andK2 universal

eekt/2nk5e2ekt/2~12nk!5
1

2
cosh21S Ek2m

2 D . ~31!

Hence,K2(x,p,t/2)5K1* (x,p,t/2), which in turn yields

^n̂↑~p!,n̂↓~p8!&52ktE dxuK1~x,p,t/2!K1~x,p8,t/2!u2.

~32!

Using the WKB functions, and expressing the cosines
complex exponents,K1 can be written as

K1~x,p,t/2!5TE dE cosh21S E2m

2 DA 1

8ppE~x!xE~p!

3$exp$ i @2pE/21p/41FE~x!1FE~p!#%

1exp$ i @2pE/21p/42FE~x!2FE~p!#%

1exp$ i @pE/22p/41FE~x!2FE~p!#%

1exp$ i @pE/22p/42FE~x!1FE~p!#%%,

~33!

where we have also replaced summation over the levels
integration. This integral can be evaluated by the station
phase method. Consider, e.g., the contribution from the
exponent. Using that]FE(x)/]E5fE(x), we find the sta-
tionary phase condition

fE~x!1fE~p!5
p

2
, ~34!
9-4
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which is equivalent to

x21p252E, x>0, p>0. ~35!

One can thus replacexE(p)→x and pE(x)→p. After some
more algebra, the contribution of the first exponent is fou
to beeipx@2 cosh$(x21p2)/22m%/2#21u(x)u(p). The contri-
butions of the remaining three exponents differ only in t
step-function factors, equallingu(2x)u(2p), u(2x)u(p),
andu(x)u(2p), respectively, so that

K1~x,p,t/2!5eipxF2 cosh
~x21p2!/22m

2 G21

. ~36!

Finally,

^n̂↑~p!,n̂↓~p8!&52
k

TE2`

1`

dx xS x21p222m

2T D
3xS x21p8222m

2T D , ~37!

where

x~j!5
1

2~11coshj!
, E

2`

1`

dj x~j!51. ~38!

In momentum, the Fermi surface is naturally defined
assuming a spread of kinetic energiesD(p2/2);T around
the Fermi-energym. This corresponds to the layer of th
order of

DpF5
T

Am
, ~39!

around the Fermi momentum

pF5A2m. ~40!

~In normal units,DpF5kBTAm/m, andpF5A2mm; interest-
ingly, neither formula contains Planck’s constant. The lat
however, enters implicitly via the expression relating t
chemical potential to the total number of trapped atom
2m5\vN.! Equation~39! introduces a natural physical mo
mentum scale. We shall denote momenta measured in u
DpF by capitalP; in particular,PF5pFAm/T5A2 m/T. New
momentum units imply a rescaling of the correlation fun
tion

^n̂↑~p!,n̂↓~p8!&dp dp85^n̂↑~P!,n̂↓~P8!&dP dP8.
~41!

Equation~37! then gets rewritten as

^n̂↑~P!,n̂↓~P8!&52
kT3/2

m E
2`

1`

dj xS j2

2
1

P22PF
2

A2 PF
D

3xS j2

2
1

P822PF
2

A2 PF
D . ~42!
06340
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Thus for a ‘‘hot’’ highly populated trap the overall shape
the momentum correlation function depends only on the ra
of m to T. Furthermore, for momenta close to the Fer
surface

P22PF
2

A2 PF

'A2~ uPu2PF!, ~43!

so that foruPu,uP8u'PF the shape of the correlation functio
is universal~i.e., independent of any physical parameters!.

Using the same approximations, one can also easily
rive an expression for the~unperturbed! momentum density

^n̂↑~P!&5^n̂↓~P!&

5
T3/2

m1/2E2`

1`

djF11expS j2

2
1

P22PF
2

A2 PF
D G21

.

~44!

Except for the overall coefficient, this expression is also u
versal in the vicinity of the Fermi-surface.

IV. LANGEVIN EQUATIONS FOR FERMIONS

In this section we develop a nonperturbative approach
the ensemble of trapped interacting fermions, using the te
niques of coherent states for Grassmann algebras. An in
duction to Grassmann algebras may be found in R
@15,19# ~see also Ref.@16#!. Note that our definition of a
coherent state is different from that used by Cahill a
Glauber@16#.

A. An overview of Grassmann algebras

A Grassmann algebra corresponding to a single fermio
state is a set of polynomials~with complex coefficients! of

the generators, g,ḡ, which are the ‘‘classical’’ counterpart

of the mode creation and annihilation operators,â,â†. They
are ‘‘classical’’ in the sense that they simply anticommu

gḡ1ḡg50, unlike ââ†1â†â51 for the operators. For
brevity, we shall call elements of a Grassmann algebrg

numbers; an arbitrary g number is c01c1g1c2ḡ1c3ḡg,
wherec0 ,c1 ,c2, and c3 are c numbers. The standard ass
ciation and distribution laws apply andg numbers commute
with c numbers. This allows one to work out a product
any twog numbers. One may also consider products betw
Hilbert-space objects~such as state vectors and operato!
and g numbers. The generators are postulated to antic
mute with â and â†, and to commute with the vacuum sta
9-5
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of the fermions,u0&. Commutation relations between mo
complex objects may be worked out using these definitio
e.g.,~with u1&5â†u0&)

g~ u1&2u0&)5gâ†u0&2gu0&52â†gu0&2u0&g52â†u0&g

2u0&g52~ u1&1u0&)g. ~45!

For the operators, one should make use of the fact that
operator may be represented as a linear combination
1/A2,â,â† and@ â,â†#/A2. It is then easy to see that one h
to assume thatg andḡ commute with diagonal operators an
anticommute with purely nondiagonal ones~in the basis
u0&,u1&). Importantly, these conventions are consistent w
the fact that generators must commute with matrix eleme
~which arec numbers!, e.g.,

g^1ua†u0&52^1uga†u0&5^1ua†gu0&5^1ua†u0&g.
~46!

Hermitian conjugation is extended tog numbers postulating
thatg†5ḡ andḡ†5g, and that (XY)†5Y†X† applies ifX or
Y or both areg numbers. Functions involvingg numbers are
understood as power series, which as a rule reduce to p
nomials, e.g.,

egâ†
511gâ†1

1

2
~gâ†!21•••511gâ†, ~47!

egâ†1ḡâ511gâ†1ḡâ1
1

2
~gâ†1ḡâ!21•••

511gâ†1ḡâ1ḡâgâ†1gâ†ḡâ

511gâ†1ḡâ1ḡg~ â†â2ââ†!. ~48!

Left and right differentiations by theg numbers are intro-
duced as, respectively, (]W /]g)150, (]W /]g)g51, and
1(]Q /]g)50, g(]Q /]g)51; apart from this, the derivative
anticommute and commute as if they were generat
(]W /]ḡ)2âḡ52(]W /]ḡ)âḡ522â(]W /]ḡ)ḡ522â, etc. The
~left! integration is defined so as to coincide with the l
differentiation:*dg150, *dgg51; apart from that, the dif-
ferentials also behave as generators.

B. Coherent states

For a given basis ofn single-particle states, determined b
the annihilation and creation operators,âk ,âk

† , one intro-

duces 2n generatorsgk ,ḡk (k51, . . . ,n). Any two genera-
tors anticommute; an element of the Grassmann algebr
then determined by 22n c-number coefficients. Any generato
commutes with the vacuum and anticommutes with any c
ation or annihilation operator. Differentiations and integ
tions are introduced component wise.

A coherent state is defined as

ug&5e2gâ†
u0&, ~49!
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where g5$g1 , . . . ,gn% and gâ†5g1â1
†1•••1gnân

† . The
coherent state is an even object~i.e., it contains only even
products of the anticommuting quantities! and hence com-
mutes with allg numbers. It readily follows that

âkug&5gkug&5ug&gk , âk
†ug&52

]W

]gk
ug&5ug&

]Q

]gk
.

~50!

Conjugating, we have,

^ḡuâk
†5^ḡuḡk5ḡk^ḡu, ^ḡuâk52^ḡu

]Q

]ḡk

5
]W

]ḡk

^ḡu,

~51!

where^ḡu5(ug&)†5^0ue2âḡ.
We stress that our definition of a coherent state diff

from a normalized coherent state as introduced by Cahill
Glauber@16#. The coherent states~49! are unnormalized.

^ḡug&5eḡg, ~52!

and thus correspond more closely to the Bargmann st
@15#, rather than to the normalized coherent states as use
quantum optics. Indeed, witha being ac number, a Barg-
mann state is introduced as,u(a)&5eaâ†

u0&5euau2/2ua&, and

^(a)u(a)&5euau2. The latter is ac number analogue of Eq
~52!. Whereas for a coherent state,ua&5eaâ†2a* âu0& and
^aua&51.

C. B representation

In a similar manner to that used in the pseudoprobabili
phase-space representations of quantum optics, we intro
a B representationfor an arbitrary Schro¨dinger operatorÂ,

Â5E dḡdgug&BÂ~ ḡ,g!^ḡu, ~53!

where dḡdg5dḡ1dg1•••dḡndgn ~note the order! and
BÂ(ḡ,g) is a g number. Note that̂ḡ8ug&5eḡ8g, and that the
double Fourier transformation is a unity operatio
*dg8eg8g9*dgegg8 f (g)5 f (g9). Then, taking the matrix ele
ment

^ḡ8uÂug8&5E dḡdĝ ḡ8ug&BÂ~ ḡ,g!^ḡug8&

5E dḡdgBÂ~ ḡ,g!eḡ8g1ḡg8, ~54!

and inverting the Fourier transformations we have

BÂ~ ḡ,g!5E dg8dḡ8e2ḡg82ḡ8g^ḡ8uÂug8&, ~55!

wheredg8dḡ85dg18dḡ18•••dgn8dḡn8 ~once more, note the or
der!. This proves the existence of aB representation for an
9-6
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arbitrary operator: unlike bosons, all integrals over a Gra
mann algebra converge trivially. For example, for the un
operator

B15e2ḡg. ~56!

Relations~50! and ~51! result in

BâkÂ5gkBÂ , BÂâ
k
†5BÂ ḡk , Bâ

k
†Â5~]W /]gk!BÂ ,

BÂâk
5BÂ~]Q /]ḡk!. ~57!

These formulas allow one readily to transform operator eq
tions into equations for the correspondingB representations

D. Dynamics of theB function

The B representation of a many-bodyr matrix of a fer-
mionic system will be called aB function. We consider the
unnormalized equilibriumB function for the system of
trapped interacting fermions

B~ ḡ,g,t!5BR̂(t) , ~58!

where R̂(t) is defined by Eqs.~2!, ~3!, and ~4!. The
Matsubara-style equation~7! for R̂(t) is readily transformed
into the equation for theB function

]B~ ḡ,g,t!

]t
52F (

s5↑,↓

]W

]gs
hgs

1kE dx
]W

]g↑~x!
g↑~x!

]W

]g↓~x!
g↓~x!GB~ ḡ,g,t!,

~59!

with the initial condition given by Eq.~56!. For brevity,
we use a ‘‘vector/matrix’’ notation, g5$g↑ ,g↓%,
gs5$gs(x)% (s5↑,↓), (]W /]gs)hgs5*dxdx8(]W /
]gs(x))h(x,x8)gs(x8), etc. @cf. also Eq.~3!#. Note that we
do not assume summation over repeated indices: unle
matrix notation is used all sums are shown explicitly.

1. Linear interaction

We start by considering the simplest possible case—a
ear interaction of two fermionic modes. Equation~59! then
reads

]B~ ḡ,g,t!

]t
52 (

k,l 51,2

]W

]gk
hklglB~ ḡ,g,t!

52S ]W

]g
hgDB~ ḡ,g,t!. ~60!

We note that
06340
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]W

]g
hg5Tr h2ghT

]W

]g
, ~61!

where superscript T means ‘‘transposed,’’ and consider
action of a particular term in the sum, e.g.,g2(]W /]g1). Re-
garded as a function of the generatorg1, theB function can
be written asB(g1)5G01g1G1, where neitherG0 nor G1

containsg1. Theng2(]W /]g1)B(g1)5g2G1 and

S 11h12dtg2

]W

]g1
DB~g1!5G01g1G11h12dtg2G15B~g1

1h12dtg2!. ~62!

That is, recalling that theB function is a polynomial of the
Grassmann algebra generators, the infinitesimal operatio
1dtghT(]W /]g) induces a linear transformation of the set
the generators, leaving the coefficients of the polynomial
tact. Only the setg5$g1 ,g2% is transformed, whileḡ
5$ḡ1 ,ḡ2% stay untouched. This means that the transform
generators are no longer Hermitian conjugate toḡ
5$ḡ1 ,ḡ2%.

These considerations suggest that equation~60! may be
solved by the ansatz

B~ ḡ,g,t!5 f ~b!B~ ḡ,gt,0!, g05g. ~63!

Thet-dependent generatorsgt are found as a linear transfor
mation of the basic set,

gt5b21g, ~64!

whereb5b(t) is a c-number matrix. It is fixed by the re
quirement@cf Eq. ~61!#

]gt

]t
5S ghT

]W

]gD g, ~65!

resulting in the equation forb(t),

]b~t!

]t
52hb~t!, b~0!51. ~66!

~The standard rule of product differentiation holds f
ghT(]W /]g), which is an even quantity, so that it suffices
consider its action on a single generator.! For the coefficient
we have] f (b)/]t52Tr h f(b), satisfied byf (b)5Detb.
This numerical factor results in an important property
‘‘conservation of the phase volume’’

E dḡdgB~ ḡ,g,t!F~ ḡ,gt!5E dḡdgtB~ ḡ,gt,0!F~ ḡ,gt!.

~67!

~On changing variables in Grassmann algebras see
@15#!. These considerations are readily extended to an a
trary linear interaction.

Note that ansatz~63! reduces computational complexit
even in the simplest case ofn52 fermions. Indeed, in this
9-7
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case, the number of independentc number coefficients deter
mining B(ḡ,g,t) equals 22n516. Equation~60! is in fact a
coupled system of 16c-number equations. Whereasb is an
n3n5232 matrix, and Eq.~66! is a coupled system ofn2

54 c-number equations.
It is worth stressing that success of our approach is roo

in properties of Bargmann states leading to Eqs.~57!. Con-
sider what happens if one works with normalized coher
states@16#, e2ḡg/2ug& ande2ḡg/2^ḡu. Note that we do not in-
troduce any notation for these states: the notationug& and^ḡu
is retained for the unnormalized~Bargmann type! coherent
states. Equation~53! is replaced by a definition of aP rep-
resentation,

Â5E dḡdgug&e2ḡgPÂ~ ḡ,g!^ḡu. ~68!

Similarly to Eq.~57! we have

PâkÂ5gkPÂ , Pâ
k
†Â5S ]W

]gk
1

ḡk

2
D PÂ , ~69!

so that the equation for theB function ~60! is replaced by

]P~ ḡ,g,t!

]t
52F S ]W

]g
1

ḡ

2
D hgGP~ ḡ,g,t!. ~70!

We see that normalizing the coherent states results in a
tional ‘‘product’’ terms in the equation for the pseudodist
bution. For bosons, these terms simply make the corresp
ing Langevin equations nonlinear@14#. For fermions, the
presence of product terms spells disaster: Equation~70!
mixes different powers of the algebra generators and he
cannot, in principle, be solved by a linear transformation
the generators.

The technique of algebra transformations is readily
tended to the real-time evolution. In this case, ther matrix
obeys the von-Neumann equation,i ]r̂/]t5Ĥ r̂2 r̂Ĥ, result-
ing in the equation for theB function

i
]B~ ḡ,g,t!

]t
5S ]W

]g
hgDB~ ḡ,g,t!2B~ ḡ,g,t!S ḡh

]Q

]ḡ
D ,

~71!

where we have assumed that the~linear! system Hamiltonian
readsH5a†ha. The first term on the RHS here is taken ca
of by transformation~64!, the equation forb being i ]b/]t
5hb. The second term on the RHS is taken care of b
transformation of the conjugated set of the generatorsḡt

5b̄21ḡ, the equation forb̄ being,i ]b̄/]t52b̄h. That is, in
the case of time evolution of a linear system, theg andḡ sets
undergo conjugate transformations and hence stay conju
This last property, however, does not generalize to the n
linear case.
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2. Stochastic transformation of the generators

It is natural to expect that, as in the way it is done f
bosons@14#, nonlinear fermionic interactions may be a
counted for by making the transformation~trajectory! b sto-
chastic. With this in mind, consider an ansatz

B~ ḡ,g,t!5Bb, ~72!

Bb5Detb B~ ḡ,gt,0!. ~73!

Here, the setg of the Grassmann algebra generators und
goes a random linear transformation,gt5b21g, and the up-
per bar in Eq.~72! denotes averaging over the statistics of t
transformations~not to be confused with the upper bar d
noting the conjugate set of generators!. These statistics are
specified by postulating an Itoˆ stochastic differential equa
tion ~SDE! @17#

db52mbdt1dQb, ~74!

for the trajectoryb5b(t). It is assumed thatm is a certain
time-independent matrix, anddQ is a matrix of which the
elements are linear combinations of Itoˆ increments with con-
stant coefficients. To determinem and dQ, one should find
the corresponding equation for theB function and then match
it to Eq. ~59!.

Our immediate goal is, therefore, to derive equations
Bb andB5Bb from the SDE~74!. To simplify this task, we
assume the following strategy. The SDE forBb is derived in
Stratonovich calculus@17#. This greatly simplifies the deri-
vation because the rules of normal calculus may be used
essence we just repeat the above considerations in the l
case. We then find the equivalent Itoˆ SDE for Bb. In turn,
this greatly simplifies the averaging in Eq.~72!.

The equivalent Stratonovich equation forb reads@17#

db52S m1
X

2 Dbdt1dQb, ~75!

where the constant matrixX is defined ~in Itô calculus,
strictly speaking! by dQ25Xdt. It is then straightforward to
show that~remember that Stratonovich calculus applies!

d Detb5Detb Tr db, ~76!

dgt52S gdbT
]W

]gD gt, ~77!

wheredb5db b21 and superscript T stands for transpose
Relation~77! may be extended to an arbitrary function of th
transformed generators, because the standard rule of pro
differentiation applies to both the differentiald and the dif-
ferential operator on the Grassmann algebragdbT(]W /]g).
Noting that

Tr db2gdbT
]W

]g
5

]W

]g
dbg, ~78!

we find the Stratonovich SDE forBb,
9-8



s

nd

a

i-

s

on
ica
ic
e
s

n

ler

-
lly.
ite-

tri-
-

ion,

o be

LANGEVIN EQUATIONS FOR INTERACTING FERMIONS . . . PHYSICAL REVIEW A 64 063409
dBb5S ]W

]g
dbgDBb5H ]W

]gF2S m1
X

2 Ddt1dQGgJ Bb.

~79!

To find the equivalent Itoˆ SDE, note thatBb is a polyno-
mial of the Grassmann algebra monomials withc-number
coefficients. We can regard these coefficients as ac-number
vectorB, and equation~79! as an equation for this vector,

dB5M~db!B. ~80!

whereM(db) is a matrix. The important point is that thi
matrix depends linearly on its argumentdb. Using this, we
easily find the equivalent Itoˆ SDE for B,

B5HM~db!1
1

2
@M~dQ!#2JB. ~81!

This can equally well be written as the Itoˆ SDE sought for
Bb,

dBb5H ]W

]gF2S m1
X

2 Ddt1dQGg1
1

2
S ]W

]g
dQgD 2J Bb.

~82!

Since Itô increments are uncorrelated withb at the same
‘‘time’’ t, averaging of this equation is straightforward a
yields the equation sought forB,

dB5F2
]W

]g S mdt1
dQ2

2 D g1
1

2
S ]W

]g
dQgD 2 GB. ~83!

The averagings here are understood in Itoˆ calculus~and can
actually be omitted since, by the rules of Itoˆ calculus, quan-
tities quadratic in Itoˆ increments are nonrandom!.

3. Nonlinear interaction

To simplify our considerations, we treat the fermions
being on a spatial grid. The interaction~4! is then that within
a single grid point. Specifically,x is assumed to be an equ
distant grid of points separated byDx. Then, the integral,
*dx, and the delta function,d(x2x8), are understood a
Dx(x and Dx21dxx8 , respectively, wheredxx8 is the Kro-
necker symbol. This assumption is in itself a regularizati
thanks to which certain formulas start making mathemat
sense@and which otherwise would remain merely symbol
like Eq. ~87! below#. An alternative regularization would b
to consider the limit of a potential interaction of fermion
with opposite spins, like

Hnl
pot5E dxdx8V~x2x8!â↑

†~x!â↑~x!â↓
†~x8!â↓~x8!.

~84!

These two viewpoints should agree for momentap!\/Dx,
where Dx is either the grid increment or the interactio
06340
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range. At the same time, on-the-grid fermions are simp
mathematically, so we will stick with them.

Comparing Eq.~59! with Eq. ~83!, we see that the non
linear interaction can indeed be modeled via stochastica
Namely, we introduce a standardized Gaussian real wh
noise variable h(x,t), such that h(x,t)50 and
h(x,t)h(x8,t8)5d(t2t8)d(x2x8), and write (s,s8
5↑,↓),

dQss8~x,x8!5dss8d~x2x8!A2k h~x,t!dt. ~85!

Then

1

2
S ]W

]g
dQgD 2

5
1

2
S ]W

]g↑
dQ↑↑g↑D 2

1
1

2
S ]W

]g↓
dQ↓↓g↓D 2

1S ]W

]g↑
dQ↑↑g↑D S ]W

]g↓
dQ↓↓g↓D

52kdtE dxF1

2

]W

]g↑~x!
g↑~x!

]W

]g↑~x!
g↑~x!

1
1

2

]W

]g↓~x!
g↓~x!

]W

]g↓~x!
g↓~x!

1
]W

]g↑~x!
g↑~x!

]W

]g↓~x!
g↓~x!G . ~86!

The third term here exactly reproduces the nonlinear con
bution to Eq.~59!. The first two are transformed into effec
tively linear contributions

2
kdt

2 (
s5↑,↓

E dx
]W

]gs~x!
gs~x!

]W

]gs~x!
gs~x!

52
kdt

2 (
s5↑,↓

E dx
]W

]gs~x!
Fd~0!

2
]W

]gs~x!
gs~x!Ggs~x!

52
kdt

2Dx (
s5↑,↓

E dx
]W

]gs~x!
gs~x!, ~87!

where we have used the fact that, under the regularizat
d(0)51/Dx. On the other hand,

2
1

2

]W

]g
dQ2g5

kdt

2Dx (
s5↑,↓

E dx
]W

]gs~x!
gs~x!, ~88!

so that contributions~87! and ~88! cancel each other.~This
emphasizes that the choice of stochastic calculus may als
regarded as a regularization@21#.! Thus the matrixm is
found to be

m↑↑~x,x8!5m↓↓~x,x8!5h~x8,x!, ~89!
9-9
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m↑↓~x,x8!5m↓↑~x,x8!50. ~90!

In other words, for the system in question the transformat
b factorizes into two identical transformations of the spin-
and spin-down sets,g↑ andg↓ ,

gs
t 5a21gs , ~91!

where a(x,x8)5b↑↑(x,x8)5b↓↓(x,x8), and b↓↑(x,x8)
5b↑↓(x,x8)50. The stochastic trajectorya obeys the Itoˆ
SDE

da~x,x8!52dtE dx9h~x,x9!a~x9,x8!

1A2k dW~x!a~x,x8!, ~92!

where the Itoˆ increment dW(x) is normalized so tha
@dW(x)#25dt/Dx.

E. Quantum averaging

1. Normally ordered characteristic function

In order to learn how to calculate quantum averages,
consider the normally-ordered characteristic function

F~ ḡ8,g8,t!5Tr@R~t!eâ†
g8eḡ8â#. ~93!

Employing Eq.~53!, this can be expressed as

F~ ḡ8,g8,t!5E dḡdgB~ ḡ,g,t!eḡg81ḡ8g2ḡg. ~94!

In obtaining this result we used the fact that Trug&^ḡu5egḡ

~thus Trug&^ḡuÞ^ḡug&5eḡg). Then, ~i! using Eq. ~73!, ~ii !
changing variablesḡ,g→ḡ,gt following Eq. ~67!, ~iii ! using
Eq. ~56!, and~iv! expressingg5bgt, we arrive at

F~ ḡ8,g8,t!5E dḡdgtexp@2ḡ~b11!gt1ḡ8bgt2g8ḡ#.

~95!

Under averaging we have a Gaussian integral on the Gr
mann algebra that is calculated directly@15# resulting in

F~ ḡ8,g8,t!5Det~11b!eḡ8(11b21)21g8. ~96!
tin
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Care needs to be exercised with the order of operators
Grassmann-algebra objects if calculating averages using
characteristic function. Consider, for example, an averag
the density operators,̂:n̂k1

n̂k2
•••n̂km

:&, where n̂k5âk
†âk ,

andkl ,l 51, . . . ,m are certain fermionic states~which may
or may not be all different, so that normal ordering is ess
tial!. If xk1

,xk2
, . . . ,xkm

andyk1
,yk2

, . . . ,ykm
are two groups

of pairwise anticommuting objects, it is easy to prove tha

xk1
yk1

xk2
yk2

•••xkm
ykm

5xk1
xk2

•••xkm
ykm

ykm21
•••yk1

.
~97!

~First moveyk1
to the right, then moveyk2

to the left ofyk1
,

etc.! Using this property we find@with r(t) being the nor-
malizedr matrix#

^:n̂k1
n̂k2

•••n̂km
:&5Tr@r~t!:n̂k1

n̂k2
•••n̂km

:#

5Tr@r~t!âk1

† âk2

†
•••âkm

† âkm
âkm21

•••âk1
#

5Tr@ âkm
âkm21

•••âk1
r~t!âk1

† âk2

†
•••âkm

† #

5Z21
]W

]ḡk1
8

]W

]ḡk2
8
•••

]W

]ḡkm
8

F~ ḡ8,g8,t!

3
]Q

]gkm
8

]Q

]gkm21
8

•••

]Q

]gk1
8

u ḡ8,g8→0 , ~98!

where Z5Tr R5F(ḡ8,g8,t)u ḡ8,g8→0 This relation is quite
general and holds even ifr(t) contains fermionic coherence
For the characteristic function given by Eq.~96! a simpler
relation holds,

^:n̂k1
n̂k2

•••n̂km
:&5Z21

]W

]gk1
8

]W

]ḡk1
8

]W

]gk2
8

]W

]ḡk2
8
•••

3
]W

]gkm
8

]W

]ḡkm
8

F~ ḡ8,g8,t!u ḡ8,g8→0 .

~99!

If the kl are all different, the normal ordering may be om
ted, and
^n̂k1
n̂k2

•••n̂km
&5Z21Det~11b!@~11b21!21#k1k1

@~11b21!21#k2k2
•••@~11b21!21#kmkm

, ~100!
while for the partition function we have,Z5Det(11b). If
any two indices coincide, Eq.~99! gives zero.

2. Example: free thermal fermions

Consider a grand-canonical ensemble of noninterac
fermions with chemical potentialm, occupyingn states with
g

energiesek , k51, . . . ,n. In this case,hkk85dkk8ek , where
ek5ek2m. Equation ~66! is readily solved, yieldingbkk8
5dkk8e

2ekt and the characteristic function is found to be

F~ ḡ8,g8,t!5)
k

11eekt1ḡk8gk8

eekt
. ~101!
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FIG. 1. Momentum correlation function̂n̂↑(P),n̂↓(P8)& for fermions in a 1D harmonic trap calculated via the approximate perturba
formula ~42!; ~a! m/T52, ~b! m/T55, ~c! m/T510, and~d! m/T520.
d-
a

-

to
e a

lso

.

Thus the partition function is

Z~t!5Tr R~t!5F~ ḡ8,g8,t!u ḡ8,g8→05)
k

11eekt

eekt
,

~102!

which is indeed a correct partition function for a gran
canonical ensemble of free fermions. Then, for the norm
ized characteristic function

Z21F~ ḡ8,g8,t!5)
k

S 11
ḡk8gk8

11eektD 5)
k

~11ḡk8gk8nk!,

~103!

wherenk5(11eekt)21 is the Fermi-Dirac distribution. Us
ing Eq. ~99! we have~with all indices different!

^n̂k1
n̂k2

•••n̂km
&5nk1

nk2
•••nkm

, ~104!

as expected for noninteracting particles.
06340
l-

V. RESULTS AND DISCUSSION

In this section, we apply the techniques outlined above
an ensemble of fermions in a harmonic trap. We assum
‘‘needle’’ trap ~cf. Sec. I! with the ratio of radial to longitu-
dinal frequencies

m̄5
v r

vz
@1. ~105!

As in Sec. III C we use here oscillator units assuming a
that the trap frequencyv5vz51. The 1D approximation is
valid if

m,T!m̄. ~106!

This sets the limit 2m̄ for the number of particles in the trap
For the effective 1D interacton we then have@18#

k5
2am̄

l 0
[k0m̄, ~107!
9-11
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wherea is the scattering length. Assuming~in normal units!
a521140 Å andv5144 Hz @7#, for trapped 6Li atoms
we find k050.067.

A. Perturbation approximation

1. Pseudo-Cooper pairing

Figure 1 shows the correlation function,^n̂↑(P),n̂↓(P8)&,
calculated via Eq.~42! for m/T52,5,10,20, as a 3D graph. I
all four cases, the correlations are peaked atP,P8;PF , re-
sulting in a characteristic four-peak shape. There are
noticeable correlations away from the Fermi surface, for p
allel and antiparallel momenta,P;6P8. There are no cor-
relations foruPuÞuP8u ~with the exception ofm/T52, but
this is an artifact of a badly defined Fermi surface for the
parameters!. In accordance with the aforementioned univ
sality of Eq.~42! for uPu,uP8u;PF , the height of the peaks

FIG. 2. Cross section forP5P8 of the momentum correlation
function calculated via the approximate perturbative formula~42!,
for values ofm/T as in Fig. 1.

FIG. 3. Functions(P) determining the signal-to-noise ratio, c
Eq. ~108!.
06340
so
r-

e
-

does not depend on the parameterm/T. @To make this feature
evident, we plot the correlation function in units o
ukuT3/2/m, cf. Eq. ~42!#. This universality is even more pro
nounced in Fig. 2, where the cross section of the correla
function for P5P8 is plotted as a function ofDP5P
2PF . We see that there is very little change to the shape
the cross section form/T>5. The case ofm/T52 is differ-
ent, which again reflects a badly defined Fermi surface; e
in this case the universality is well pronounced forP>PF
2DpF .

Formally, the four-peak structure of the correlation fun
tion simply reflects the fact that, for largerk, the momentum
probability density for thekth oscillator state is predomi
nantly concentrated at the boundaries of the classically
lowed region. The particles close to the Fermi surface he
spend most of their time at the boundaries of the classic
allowed region in momentum space. This is exactly the pr
erty reflected by the momentum correlation function. Ho
ever, physically, the correlations at opposite mome
~pseudo-Cooper correlations! remain difficult to explain. Na-
ively, one might expect that the following simple pictu
should hold for temperatures that are not too low. High
excited oscillator states correspond to a motion, which is
essence classical. This suggests a picture of trapped ferm

FIG. 4. Top: momentum correlation function̂n̂↑(p),n̂↓(p8)&
for fermions in a 1D harmonic trap calculated via the technique
stochastic transformations. Bottom: cross sections of the correla
function for p52p8 ~solid line! and p5p8 ~dashed line!, and the

momentum distribution̂ n̂(p)& ~dash-dotted line!. Vertical dotted
lines mark the boundaries of the classically allowed region fo
particle on the Fermi surface.T52, m510, k520.1 ~all oscillator
units!.
9-12



le
ea
o

ic
h

co
g
la
i

hi
i

e
a
u

el
E

is
e

r
th
re
ns
i

ave
the

wer
ion
is
nd
hot

d to

s.

xi-

-

are
peri-
for

LANGEVIN EQUATIONS FOR INTERACTING FERMIONS . . . PHYSICAL REVIEW A 64 063409
as a microcanonical ensemble of trapped classical partic
where the temperature plays the role of the energy spr
Classical statistics should then favor co-oscillating pairs
fermions, where a spin-up particle and a spin-down part
oscillate with close amplitude and phase. However, in suc
pair momenta are always equal, and, therefore, can only
tribute to the equal-momentum correlations. Since thin
should grow more classical with temperature, only corre
tions for equal momenta should survive as temperature
creases.

It is instructive to estimate the parameters for which t
picture should be valid. The energy width of the Ferm
surface is assessed asT. For the motion of the Fermi-surfac
particle to become classical, this width should accommod
enough oscillator states to form a coherent state. This res
in the condition,Am&T, for the Cooper-like correlation to
vanish. It does not contradict 1,m1/3!T&m for which Eq.
~42! is valid ~one example isT5100, m51000). Hence, if
this semiclassical picture held, no pseudo-Cooper corr
tions would appear in our results, whereas according to
~42! the correlations forP5P8 and P52P8 are equally
strong. Thus the very presence of these correlations, and
pecially the fact that they persist at higher temperatures,
manifestation of a quantum and fermionic nature of trapp
particles.

Can the pseudo-Cooper correlations be observed? In p
ciple, this is possible by placing two particle detectors at
opposite sides of the ‘‘needle.’’ Then, the momentum cor
lations will manifest themselves as time-of-flight correlatio
after the trap is switched off and the fermionic sample

FIG. 5. Same as Fig. 4, forT52, m510, k520.2 ~all oscil-
lator units!.
06340
s,
d.
f

le
a
n-
s
-

n-

s
-

te
lts

a-
q.

es-
a
d

in-
e
-

s

allowed to expand freely. Assume on each side we h
counted atoms that have momenta within an interval of
order ofDpF in the vicinity of pF . In the ‘‘large-P’’ units we
use, this corresponds to an interval of unity, so that the po
of correlations we wish to observe equals the correlat
function itself. The number of particles in this sample

^n̂(p)&. In the ideal case of 100% detection efficiency a
the only noise source in this measurement being the s
noise, the single-run signal-to-noise ratio squared is foun
be, ~accounting for the two species of fermions!

F S

NG2

5
2^n̂↑~P!,n̂↓~P!&

2@^n̂↑~P!&1^n̂↓~P!&#
5

uku

2m1/2
s~P!5

uk0um̄

2m1/2
s~P!,

~108!

wheres(P) is the ratio of the integrals of the RHS of Eq
~42! and ~44! for P5P8.

The function s(P) is plotted in Fig. 3 for m/T
52,5,10,20. On inspecting this figure, we see that the ma
mal signal-to-noise ratio is achieved slightly abovePF and
corresponds tos(P)50.13. With k0520.067, and assum
ing that the trap is filled to the possible limit,m5m̄, the ideal
signal-to-noise ratio is thus estimated as 0.005m̄1/2. Thus in
the ideal case no more than 200 experimental runs
needed to beat the shot noise. How other noises and ex
mental imperfections would affect this result is a subject
further discussion.

FIG. 6. Same as Fig. 4, forT52, m510, k520.3 ~all oscil-
lator units!.
9-13
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2. Limits to 1D perturbative treatment

We will now consider the limits of the perturbative trea
ment. An effective energy a fermion acquires due to inter
tions is particle density timesk. Since the number of par
ticles is ;m and the size of the trapped sample is of t
order ofAm, the density is estimated asAm. The same esti-
mate applies to particles at the Fermi surface: their numbe
estimated asT, and they are concentrated in the intervaldxF

found from T;dxF
2/25A2m dxF , so that their density

T/dxF;Am. Thus the perturbative treatment is applicable

kAm!m,T. ~109!

The former inequality here guarantees that the trap pote
is not disturbed by the Dirac sea. The latter allows inter
tions within the Fermi surface to be treated perturbativel

In a needle trap, perturbation results are applicable if

k0m̄Am!T,m. ~110!

Comparing this to Eq.~108!, we find that the applicability of
the perturbation treatment limits the signal-to-noise ra
squared,@S/N#2, by k0T/2m. We needm/T*5 to establish
the pseudo-Cooper pairing feature, which in turn lim
@S/N#2 to 0.007. This does not appear to be a problem
more serious problem is that the applicability of the 1D p
turbative treatment sets a limit to the number of particles
the trap:k0m̄!Am andm<m̄ yields m̄!1/k0

25250.

FIG. 7. Same as Fig. 4, forT52, m510, k520.4 ~all oscil-
lator units!.
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B. Nonperturbative regime

Not unexpectedly, simulations using the random trans
mation techniques turned out to be quite involved. Relia
results were only obtained for few atoms in a trap. At t
same time, these simulations revealed certain details and
dencies that are quite likely to be present in momentum c
relations in larger samples. They also give an indication
certain effects characteristic of finite fermionic samples t
could be a subject to further investigation.

In Figs. 4–8, we present the results of the nonperturba
Monte Carlo simulations of the trapped fermions, forT52,
m510, andk ranging fromk520.1 ~Fig. 4! to k520.5
~Fig. 8!. Equation~92! was simulated in a basis of 30 lowe
oscillator states. For each value ofk, we calculated the mo-
mentum distribution and the spin up/spin down moment
correlation function using the formulas

^n̂~p!&5^n̂↑~p!&1^n̂↓~p!&

52Z21Det2~11a!@~11a21!21#pp, ~111!

^n̂↑~p!,n̂↓~p8!&

5^n̂↑~p!n̂↓~p8!&2^n̂↑~p!&^n̂↓~p8!&

5Z21Det2~11a!@~11a21!21#pp@~11a21!21#p8p8

2 1
4 ^n̂~p!&2, ~112!

whereZ5Det2(11a) ~recall thatb5a % a). These quanti-
ties were found as averages over samples of 106 trajectories.

FIG. 8. Same as Fig. 4, forT52, m510, k520.5 ~all oscil-
lator units!.
9-14
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The top panels of Figs. 4–8 show the correlation function
a 3D plot. In the bottom panels of the figures, we plot t
cross sections of this function for opposite momenta,p85
2p, as solid lines, and for equal momenta,p85p, as dashed
lines. The momentum distributions,̂ n̂(p)&5^n̂↓(p)&
1^n̂↑(p)&, are shown as dash-dotted lines. In Fig. 9, we a
present the results of the perturbative calculation using
exact perturbative formula~24! for k520.1. We see that the
data presented in Figs. 4 and 9 are barely distinguisha

FIG. 9. Same as Fig. 4 but calculated via the exact perturba
relation~24!, for T52, m510, k520.1 ~all oscillator units!. This
figure should be compared to Fig. 4.
71
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providing us with verification both of the techniques of ra
dom algebra transformations and of the numerical algorith

As opposed to the approximate formula~42!, both the
exact perturbative and the nonperturbative results show
pseudo-Cooper correlations always exceed those at e
momenta. The relative increase in the Cooper correlation
lower temperatures may be regarded as a precursor to a
transition proper.~Which in a final system should manifes
itself as correlations at opposite momenta becomingmuch
larger than correlations at equal momenta!. As can be further
seen from the figures, stronger interactions lead first to qu
titative and then to qualitative changes in the moment
correlations. Correlations grow linearly ask grows. On the
top of that, we see that pseudo-Cooper correlations sta
dominate the system. Interestingly, not only the differen
between the opposite and same-momentum correlat
grows, but pseudo-Cooper correlations also extend from
Fermi surface into the Dirac sea. This effect, which is
consequence of the final size of the system, becomes
pronounced at2k50.5.

So what can we expect in larger samples? Qualitatively
is quite probable that the pseudo-Cooper correlations will
present. The difference between these and correlation
equal momenta, which is in essence the Cooper-pa
proper, is much less likely to survive. A quantitative theo
of these effects in larger samples, as well as an extensio
our results to 3D~so as to get rid of the restrictions of
needle trap!, remain subject to further work.
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