121 research outputs found

    Vertical distribution and diurnal migration of atlantid heteropods

    Get PDF
    © Inter-Research 201 Understanding the vertical distribution and migratory behaviour of shelled holoplanktonic gastropods is essential in determining the environmental conditions to which they are exposed. This is increasingly important in understanding the effects of ocean acidification and climate change. Here we investigated the vertical distribution of atlantid heteropods by collating data from publications and collections and using the oxygen isotope (? 18 O) composition of single aragonitic shells. Data from publications and collections show 2 patterns of migration behaviour: small species that reside in shallow water at all times, and larger species that make diurnal migrations from the surface at night to deep waters during the daytime. The ? 18 O data show that all species analysed (n = 16) calcify their shells close to the deep chlorophyll maximum. This was within the upper 110 m of the ocean for 15 species, and down to 146 m for a single species. These findings confirm that many atlantid species are exposed to large environmental variations over a diurnal cycle and may already be well adapted to face ocean changes. However, all species analysed rely on aragonite supersaturated waters in the upper < 150 m of the ocean to produce their shells, a region that is projected to undergo the earliest and greatest changes in response to increased anthropogenic CO 2

    INTELLIGENT SYSTEMS FOR PRECISION DENTAL DIAGNOSIS AND TREATMENT PLANNING – A REVIEW

    Get PDF
    Machines have changed the course of mankind. Simple machines were the basis of human civilization. Today with humongous technological development, machines are intelligent enough to carry out very complex nerve-racking tasks. The ability of a machine to learn from algorithms changed eventually into, the machine learning by itself, which constitutes artificial intelligence. Literature has plausible evidence for the use of intelligent systems in medical field. Artificial intelligence has been used in the multiple denominations of dentistry. These machines are used in the precision diagnosis, interpretation of medical images, accumulation of data, classification and compilation of records, determination of treatment and construction of a personalized treatment plan. Artificial intelligence can help in timely diagnosis of complex dental diseases which would ultimately aid in rapid commencement of treatment. Research helps us understand the effectiveness and challenges in the use of this technology. The apt use of intelligent systems could transform the entire medical system for the better

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models

    BOBMEX: the Bay of Bengal monsoon experiment

    Get PDF
    The first observational experiment under the Indian Climate Research Programme, called the Bay of Bengal Monsoon Experiment (BOBMEX), was carried out during July-August 1999. BOBMEX was aimed at measurements of important variables of the atmosphere, ocean, and their interface to gain deeper insight into some of the processes that govern the variability of organized convection over the bay. Simultaneous time series observations were carried out in the northern and southern Bay of Bengal from ships and moored buoys. About 80 scientists from 15 different institutions in India collaborated during BOBMEX to make observations in most-hostile conditions of the raging monsoon. In this paper, the objectives and the design of BOBMEX are described and some initial results presented. During the BOBMEX field phase there were several active spells of convection over the bay, separated by weak spells. Observation with high-resolution radiosondes, launched for the first time over the northern bay, showed that the magnitudes of the convective available potential energy (CAPE) and the convective inhibition energy were comparable to those for the atmosphere over the west Pacific warm pool. CAPE decreased by 2-3 kJ kg-1 following convection, and recovered in a time period of 1-2 days. The surface wind speed was generally higher than 8 m s-1. The thermohaline structure as well as its time evolution during the BOBMEX field phase were found to be different in the northern bay than in the southern bay. Over both the regions, the SST decreased during rain events and increased in cloud-free conditions. Over the season as a whole, the upper-layer salinity decreased for the north bay and increased for the south bay. The variation in SST during 1999 was found to be of smaller amplitude than in 1998. Further analysis of the surface fluxes and currents is expected to give insight into the nature of coupling

    Biogeochemical and ecological impacts of boundary currents in the Indian Ocean

    Get PDF
    Monsoon forcing and the unique geomorphology of the Indian Ocean basin result in complex boundary currents, which are unique in many respects. In the northern Indian Ocean, several boundary current systems reverse seasonally. For example, upwelling coincident with northward-flowing currents along the coast of Oman during the Southwest Monsoon gives rise to high productivity which also alters nutrient stoichiometry and therefore, the species composition of the resulting phytoplankton blooms. During the Northeast Monsoon most of the northern Indian Ocean boundary currents reverse and favor downwelling. Higher trophic level species have evolved behavioral responses to these seasonally changing conditions. Examples from the western Arabian Sea include vertical feeding migrations of a copepod (Calanoides carinatus) and the reproductive cycle of a large pelagic fish (Scomberomorus commerson). The impacts of these seasonal current reversals and changes in upwelling and downwelling circulations are also manifested in West Indian coastal waters, where they influence dissolved oxygen concentrations and have been implicated in massive fish kills. The winds and boundary currents reverse seasonally in the Bay of Bengal, though the associated changes in upwelling and productivity are less pronounced. Nonetheless, their effects are observed on the East Indian shelf as, for example, seasonal changes in copepod abundance and zooplankton community structure. In contrast, south of Sri Lanka seasonal reversals in the boundary currents are associated with dramatic changes in the intensity of coastal upwelling, chlorophyll concentration, and catch per unit effort of fishes. Off the coast of Java, monsoon-driven changes in the currents and upwelling strongly impact chlorophyll concentrations, seasonal vertical migrations of zooplankton, and sardine catch in Bali Strait. In the southern hemisphere the Leeuwin is a downwelling-favorable current that flows southward along western Australia, though local wind forcing can lead to transient near shore current reversals and localized coastal upwelling. The poleward direction of this eastern boundary current is unique. Due to its high kinetic energy the Leeuwin Current sheds anomalous, relatively high chlorophyll, warm-core, downwelling eddies that transport coastal diatom communities westward into open ocean waters. Variations in the Leeuwin transport and eddy generation impact many higher trophic level species including the recruitment and fate of rock lobster (Panulirus cygnus) larvae. In contrast, the transport of the Agulhas Current is very large, with sources derived from the Mozambique Channel, the East Madagascar Current and the southwest Indian Ocean sub-gyre. Dynamically, the Agulhas Current is upwelling favorable; however, the spatial distribution of prominent surface manifestations of upwelling is controlled by local wind and topographic forcing. Meanders and eddies in the Agulhas Current propagate alongshore and interact with seasonal changes in the winds and topographic features. These give rise to seasonally variable localized upwelling and downwelling circulations with commensurate changes in primary production and higher trophic level responses. Due to the strong influence of the Agulhas Current, many neritic fish species in southeast Africa coastal waters have evolved highly selective behaviors and reproductive patterns for successful retention of planktonic eggs and larvae. For example, part of the Southern African sardine (Sardinops sagax) stock undergoes a remarkable northward migration enhanced by transient cyclonic eddies in the shoreward boundary of the Agulhas Current. There is evidence from the paleoceanographic record that these currents and their biogeochemical and ecological impacts have changed significantly over glacial to interglacial timescales. These changes are explored as a means of providing insight into the potential impacts of climate change in the Indian Ocean

    The monsoon currents in the north Indian Ocean

    No full text
    The monsoon currents are the seasonally reversing, open-ocean currents that flow between the Arabian Sea and the Bay of Bengal, the two wings of the north Indian Ocean. The Summer Monsoon Current (SMC) flows eastward during the summer monsoon (May-September) and the Winter Monsoon Current (WMC) flows westward during the winter monsoon (November-February). We assemble data on ship drifts, winds and Ekman drift, and geostrophic Currents derived from altimetry and hydrography to describe the observed climatological seasonal cycle of the monsoon currents. We then use an Oceanic General Circulation Model (OGCM) to simulate these currents and estimate their transports, and a 11/2-layer reduced-gravity model to investigate the processes that force them. The monsoon currents extend over the entire basin, from the Somali coast to the eastern Bay of Bengal. They do not, however, come into being, or decay, over this entire region at a given time. Different parts of the currents form at different times, and it is only in their mature phase that the currents exist as trans-basin flows. The westward WMC first forms south of Sri Lanka in November and is fed initially by the equatorward East India Coastal Current (EICC); the westward WMC in the southern Bay appears later. In its mature phase during December-March, the WMC flows westwards across the southern Bay; it divides into two branches in the Arabian Sea. One of these branches continues flowing westwards, whereas the other turns around the Lakshadweep high (a sea-level high off southwest India) to flow into the poleward West India Coastal Current (WICC). The WMC is primarily a geostrophic current, modulated by Ekman drift. The eastward flowing SMC first appears in the southern Bay during May. In its mature phase, which peaks with the summer monsoon in July, the SMC in the Arabian Sea is a continuation of the Somali Current and the coastal Current off Oman. It flows eastward and southeastward across the Arabian Sea and around the Lakshadweep low (a sea-level low off southwest India), eastward south of Sri Lanka, and into the Bay of Bengal. Strong winds during the summer monsoon ensure that Ekman drift dominates at the surface, leading to a more complex vertical structure in the SMC than in the WMC. In the depth-averaged flow over 50 m, the mature phase of the SMC lasts from May to September. The numerical experiments show that the dynamics of the north Indian Ocean on seasonal time scales can be explained by linear wave theory. The circulation at any point is decided by both local forcing and remote forcing, whose signals are carried by equatorial and coastal waves. Superimposed on the currents associated with these waves is the local Ekman drift. The geostrophic component of the monsoon currents is forced by several processes. In the Bay of Bengal, the monsoon currents are forced by Ekman pumping and by the winds in the equatorial Indian Ocean. In the eastern Arabian Sea, the major forcing mechanisms are the winds along the east and west coasts of India and Sri Lanka these processes link the parts of the SMC in the Arabian Sea and the Bay during the summer monsoon, and of the WMC early during winter. Ekman pumping in the central Arabian Sea and off the Somali coast forces the monsoon currents in the central and western Arabian Sea, with Rossby waves radiated from the Indian west coast also playing a role. Therefore, the monsoon currents consist of several parts, each of which is forced by one or more processes, which act in concert to produce the continuous currents seen flowing across the breadth of the north Indian Ocean

    Influence of Rainfall Over Eastern Arabian Sea on Its Salinity

    No full text
    The west coast of India and the adjoining eastern Arabian Sea (EAS) is one of the high rainfall zones of Indian summer monsoon. The summer monsoon rainfall in this region is about 1,036km(3), which is comparable to the annual runoff of the Ganga-Brahmaputra river system. We have investigated the impact of EAS rainfall and Bay of Bengal (BoB) low-salinity water on the Arabian Sea salinity with a suite of experiments using an ocean general circulation model. The sea surface salinity (SSS) of EAS decreases progressively from June to September by 0.5 to 1psu. A numerical experiment that isolates the effect of EAS rainfall suggests that this SSS decrease is largely due to local rainfall over the EAS. The spatial pattern of SSS decrease, however, is influenced by the prevailing West India Coastal Current. The role of low-salinity water originating in the BoB on reducing the EAS salinity has also been examined. In the South Eastern Arabian Sea, during winter, the SSS decreases by about 1.5psu. This freshening is caused by rainfall during the early winter in the southwestern BoB between 6 degrees N and 15 degrees N. Neither rainfall to the north of 15 degrees N nor river runoff into the BoB contributes much to the South Eastern Arabian Sea freshening during winter
    corecore