46 research outputs found

    Alpine freshwater fish biodiversity assessment: an inter-calibration test for metabarcoding method set up

    Get PDF
    The analysis of environmental DNA (eDNA) by high throughput sequencing (HTS) is proving to be a promising tool for freshwater fish biodiversity assessment in Europe within the Water Framework Directive (WFD, 2000/60/EC), especially for large rivers and lakes where current fish monitoring techniques have known shortcomings. These new biomonitoring methods based on eDNA show several advantages compared to classical morphological methods. The sampling procedures are easier and cheaper and eDNA metabarcoding is non-invasive and very sensitive, allowing for the detection of traces of DNA. However, eDNA metabarcoding methods need careful standardization to make the results of different surveys comparable. The aim of the EU project Eco-AlpsWater is to test and validate molecular biodiversity monitoring tools for aquatic ecosystems (i.e., eDNA metabarcoding) to improve the traditional WFD monitoring approaches in Alpine waterbodies. To this end, an inter-calibration test was performed using fish mock community samples containing either tissue-extracted DNA, eDNA collected from aquaculture tanks and eDNA samples collected from Lake Bourget (France). Samples were analysed using a DNA metabarcoding approach, relying on the amplification and HTS of a 12S rDNA marker, in two separate laboratories, to evaluate if different laboratory and bioinformatic protocols can provide a reliable and comparable description of the fish communities in both mock and natural samples. Our results highlight good replicability of the molecular laboratory protocols for HTS and good amplification success of selected primers, providing essential information concerning the taxonomic resolution of the 12S mitochondrial marker in describing the Alpine fish communities. Interestingly, different concentrations of species DNA in the mock samples were well represented by the relative DNA reads abundance. These tests confirm the reproducibility of eDNA metabarcoding analyses for the biomonitoring of freshwater fish inhabiting Alpine and peri-Alpine lakes and river

    Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy

    Get PDF
    Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size)

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Cryptic diversity with wide salinity tolerance in the putative euryhaline **Testudinella clypeata** (Rotifera, Monogononta)

    No full text
    Aquatic faunas in fresh, brackish, and salt waters are usually well defined and differ amongst these three habitats. Nonetheless, some animals are known to be euryhaline, namely present across wide salinity ranges. The wide tolerance of putative euryhaline species has, however been refuted in some cases by DNA taxonomy, which has uncovered cryptic diversity with narrow ecological niches. We aim to improve knowledge on the putative euryhalinism of microinvertebrates and test whether it might actually be a real phenomenon or if euryhaline species are mostly a consequence of our previous inability to identify cryptic species with narrow salinity ranges, as discovered in Brachionus plicatilis. Using morphological analyses and DNA taxonomy, we investigated the species reality and distribution of a putative euryhaline rotifer species, Testudinella clypeata, and evaluated whether cryptic species are ecologically and/or geographically segregated. Different DNA taxonomy approaches concurred in revealing the presence of seven cryptic species within the T.?clypeata morphospecies, which, in contrast to what has been previously detected, are actually euryhaline. Moreover, differences in analysed morphological traits were not significantly different amongst cryptic species. This suggests that DNA taxonomy improves our estimates of the actual diversity of microscopic species, in contrast to the morphological approach

    Data from: Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data

    No full text
    1. Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The Generalized Mixed Yule Coalescent (GMYC) and the Poisson Tree Process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. 2. Here we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2,000 separate species delimitation analyses across 16 empirical datasets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. 3. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. 4. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses

    Adineta_65

    No full text
    phylogenetic tree of the genus Adinet

    Rotaria_sordida_19

    No full text
    phylogenetic tree of the species complex Rotaria sordid
    corecore