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Abstract 72 

 73 

Insect pollination constitutes an ecosystem service of global importance, providing 74 

significant economic and aesthetic benefits as well as cultural value to human society, 75 

alongside vital ecological processes in terrestrial ecosystems. It is therefore important to 76 

understand how insect pollinator populations and communities respond to rapidly changing 77 

environments if we are to maintain healthy and effective pollinator services. This paper 78 

considers the importance of conserving pollinator diversity to maintain a suite of functional 79 

traits to provide a diverse set of pollinator services. We explore how we can better understand 80 

and mitigate the factors that threaten insect pollinator richness, placing our discussion within 81 

the context of populations in predominantly agricultural landscapes in addition to urban 82 

environments. We highlight a selection of important evidence gaps, with a number of 83 

complementary research steps that can be taken to better understand: i) the stability of 84 

pollinator communities in different landscapes in order to provide diverse pollinator services; 85 

ii) how we can study the drivers of population change to mitigate the effects and support 86 

stable sources of pollinator services; and, iii) how we can manage habitats in complex 87 

landscapes to support insect pollinators and provide sustainable pollinator services for the 88 

future. We advocate a collaborative effort to gain higher quality abundance data to 89 

understand the stability of pollinator populations and predict future trends. In addition, for 90 

effective mitigation strategies to be adopted, researchers need to conduct rigorous field-91 

testing of outcomes under different landscape settings, acknowledge the needs of end-users 92 

when developing research proposals and consider effective methods of knowledge transfer to 93 

ensure effective uptake of actions. 94 

 95 

 96 
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1. Importance of insect pollination 97 

 98 

1.1 Providing an ecosystem service 99 

 100 

Insects show an astonishing taxonomic diversity and are abundant in almost all 101 

environments across the globe (ca. 1 million described species, with an estimated >4 million 102 

undescribed; Stork et al., 2015). Their importance for the functioning of ecosystems cannot 103 

be overstated, contributing to fundamental ecosystem processes including soil turnover, 104 

decomposition and nutrient cycling, and play key roles in local food webs (Schwartz et al., 105 

2000). These processes have direct implications for human welfare by providing critical 106 

‘ecosystem services’, which were defined by Fisher and colleagues as “the aspects of 107 

ecosystems utilized (actively or passively) to produce human well-being” (Fisher et al., 2009: 108 

modified from Boyd and Banzhaf 2007). For example, predatory and parasitoid insects play 109 

the role of natural enemies of pest herbivores and so help to control the pests of agricultural 110 

crops grown to feed the human population.  111 

 112 

Of the multiple roles that insects play, pollinating flowering plants is a process that is 113 

of the upmost importance in terrestrial environments and one which provides vital ecosystem 114 

services for human wellbeing (Carpenter et al., 2006; Garibaldi et al., 2011a, 2014). Over 115 

85% of described flowering plant species are dependent, to some degree, on animal 116 

pollination (Ollerton et al., 2011), with mobile foraging insects accounting for the vast 117 

majority of this activity (Kremen et al., 2007). Insect pollination maintains genetic diversity 118 

in plant populations (Kearns et al., 1998), and provides advantages such as increased fruit 119 

quality and quantity, and seed production and fertility, leading to greater vigour of the next 120 

generation (Albrecht et al., 2012; Barrett, 2003). Thus, ecologically, insect pollination is 121 
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crucial in sustaining diverse and healthy populations of wild plants and this in turn underpins 122 

trophic networks (Memmott, 1999). Insect pollination also has high economic value to 123 

humans (Allsopp et al., 2008, Hein, 2009; Palomo et al., 2015; Winfree et al., 2011b), 124 

significantly increasing the yield and health of cultivated crops (see Table 1), placing the 125 

value of insect pollination for world agriculture > €150bn (Gallai et al., 2009; Lautenbach et 126 

al., 2012), as well as being of high aesthetic and cultural value through supporting florally 127 

diverse landscapes (Lovell and Sullivan, 2006; Wratten et al., 2012). 128 

 129 

A growing global human population (9bn by 2050) and increases in the average 130 

calorific intake per person, places rising demands for food security under rapidly changing 131 

environments (Godfray et al., 2010). As much as 75% of agricultural crop species are, to 132 

some degree, reliant on animal pollination (Table 1), with the suggestion that a complete loss 133 

of this service could reduce yields by ca. 40% and 16% for fruit and vegetables, respectively 134 

(Klein et al., 2007). Furthermore, most lipids and micronutrients important for the human diet 135 

and public health are obtained from plants requiring animal pollination (Chaplin-Kramer et 136 

al., 2014; Eilers et al., 2011). With insects constituting the vast majority of animal 137 

pollination, we should recognise our duty to help maintain sustainable and healthy insect 138 

pollinator populations and take full advantage of this ‘free’ ecosystem service effectively. 139 

Reports of insect pollinator declines in many parts of the world suggest, however, that we 140 

may not have lived-up to this responsibility (see section 2) increasing the risk of future 141 

pollination deficits in areas requiring high, and increasing, pollination demands (Aizen et al., 142 

2008a; Aizen and Harder, 2009; Lautenbach et al., 2012; Polce et al., 2014).  143 

 144 

Areas experiencing drastic transitions in land-use from natural habitats to large scale 145 

intensive agriculture, may find that native resident pollinators are unable to provide the level  146 
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Table 1. Selected recent studies showing the effects of wild or managed pollinators on commercially important crops. Studies consist of reviews 147 

of primary literature that present an overview of the global picture (1-3) and recent studies showing experimental manipulations that did not 148 

focus exclusively on honeybees (4-9). Pollinators were either allowed open access to inflorescence (OP) or excluded while still allowing wind 149 

and self-pollination (WS) to occur. The studies were chosen as examples and the table is not an exhaustive coverage of the literature. 150 

 Major insect 
pollinator(s) 

Plant host(s) Quality 
measure(s) 

Description Authors 

1 Various Various Various Review of 252 crop species showing that majority of important crops benefit from animal (overwhelmingly insect) 
pollination by increasing either seed production, fruit set or fruit number 

(Klein et al., 2007) 

2 Apis mellifera, 
Various 

Various Fruit set Study of 41 global crop systems, showing general trend for i) fruit set to increase with visitations from wild pollinators, 
ii) magnitude of increase in fruit set to be significantly greater for plants visited by wild pollinators relative to 
honeybees. 

(Garibaldi et al., 
2013) 

 

3 Various Various Economic 
impact 

Review of 90 studies of crop visiting pollinators using data from 1394 global field sites, concluding that crop visits from 
bees provided pollination service that contributed ca. $3,251ha-1   

(Kleijn et al., 
2015) 

4 Apis mellifera, 
Bombus spp. 
Hoverflies 
 

Oilseed rape  
(Brassica napus) 

Seed set, seed 
quality, market 
value 

Experimental manipulation using ten spring oilseed rape (canola) fields that were either OP or WS, showing OP 
comparatively  increased seed weight and quality but had no effect on seed set (estimated increase in market value of 
crop by ca. 20%).  

(Bommarco et al., 
2012b) 

5 Various Gala & Cox Apple  
(Malus 
domestica) 

Fruit set, seed 
set, fruit quality, 
economic 
impact 

Experimental manipulation of pollination across six orchards in two commercial apple varieties. OP treatment 
produced significant increase in fruit set and seed number compared to WS (economic benefits ca. £11,900 and 
£14,800ha-1 for Cox and Gala varieties respectively).  

(Garratt et al., 
2014a) 

 

6 Apis mellifera, 
Wild bees 
Hoverflies 

Blueberry  
(V. corymbosum) 

Fruit set, seed 
set, fruit weight 

Experimental manipulation using ten paired sites with either wildflower planted (WF) or mowed field (MF) margins 
across four years. WF increased fruit set, average berry weight and seed set but for only 3 of 4 years after planting; 
increase corresponded to increase in abundance of wild bees and hoverflies in same years.  

(Blaauw and 
Isaacs, 2014a) 

 

7 Apis mellifera, 
Osmia bicornis 

Strawberry  
(Fragaria x 
ananass) 

Fruit set, fruit 
weight, 
Economic value 

Experimental manipulation of ten plots in areas with established communities of commercially available pollinators. 
Inflorescences receiving OP produced higher prop. of marketable fruit, higher fruit weight and longer shelf life 
compared with WS (increased commercial value per fruit by 38.6%). 

(Klatt et al., 2014) 

 

8 Apis mellifera, 
Bombus spp. 

Field bean  
(Vicia faba) 

Seed set, Seed 
weight 

Experimental manipulation at 10 sites, with OP produced twice the seed and contained beans that were 
approximately 9% heavier than the WE treatment 

(Nayak et al., 
2015) 

9 Apis mellifera 
Various 

Apple 
(M. domestica) 

Fruit set Study of 47 orchards with managed honeybee colonies either present or absent, reporting proportion of fruit set was 
higher in OP compared to WS. Fruit set was not significantly affected by honeybee presence but did increase with wild 
bee species richness.  

Mallinger and 
Gratton (2015) 



8 | P a g e  

 

of pollination service required (Astegiano et al., 2015; Klein et al., 2012; Kremen et al., 2002, 151 

2004). For example, in the state of California, USA, half of the country’s domesticated 152 

honeybee hives are transported to the region to pollinate large scale cultivations (such as 153 

Almonds: Aizen and Harder, 2009), a tactic similarly adopted by other countries across the 154 

globe (Crane, 1990; Klein et al., 2007; Palomo et al., 2015). In the apple and pear orchards of 155 

the Sichuan province of China, apparent reductions in wild bee populations, have led to a 156 

dependency on flowers having to be pollinated by hand (Figure 1; Partap & Partap, 2002; 157 

Partap and Ya, 2012). Instead of receiving a free and rapid pollination service from a healthy 158 

insect community (Morandin and Winston, 2006), it has been replaced by comparatively 159 

expensive human labour. Apple and pear cultivation in the area has now declined 160 

significantly (Partap and Ya, 2012), and it thus seems that in the long-term, crops which are 161 

less dependent on insect pollinators (such as plum, loquat, walnut, and other cereal crops), 162 

will be grown instead. Such action may only exacerbate the problem to local insect pollinator 163 

populations as this could further reduce nutritional resource availability in those landscapes, 164 

especially as many self-compatible plants produce low (or zero) nectar content and can 165 

produce less nutritious pollen that may also be harder for insects to collect (Zimmerman, 166 

1988; Johnson & Bond, 1997).  167 

 168 

1.2 Brief introduction to pollination ecology and the importance of wild pollinators 169 

 170 

Many angiosperm species possess relatively open flower morphologies, allowing a 171 

range of insect pollinator species access to the nectar and pollen rewards within. Such plant-172 

pollinator mutualisms are often generalised involving many species interactions (Willmer, 173 

2011). Whilst the dynamics of mutualistic networks can be relatively complex, we can make 174 

the broad theoretical prediction that generalist species may be more resistant to  175 
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 176 

Figure 1| Combined and interactive set of environmental stressors can threaten pollinator 177 

communities. Persistently induced stress may lead to pollinator population declines resulting 178 

in the composition and stability of pollinator communities to be affected with potential loss of 179 

species richness and reduced pollination insurance. Loss of pollinator services can impact on 180 

human welfare in many ways, but a major concern is that native resident pollinator 181 

communities are no longer able to keep-up and meet demands leading to ineffective 182 

pollination of agricultural crops and wildflowers. For example, inadequate local pollination 183 

services have led to the implementation of extreme measures, including costly replacement 184 

by: a) employing human labour to hand pollinate flowers (Partap and Yu, 2012; photo taken 185 

and provided with permission by Uma Partap), or b) manage domesticated pollinators such as 186 

honeybees (Bond et al., 2014). Many insect taxa constitute a pollinator community all of 187 

which visit flowers for nectar and pollen rewards, but certain Orders constitute the vast 188 

majority of insects providing a pollination service: the Coleoptera (beetles), Diptera (flies), 189 

some Hemiptera (true bugs), Hymenoptera (bees, many wasps & some ants), Lepidoptera 190 

(butterflies & moths) and Thysanoptera (thrips). 191 

 192 

 193 

 194 

 195 
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environmental perturbations, depending on its extent, and their presence may contribute to 196 

greater redundancy in pollination function and community resilience to global change 197 

(Astegiano et al., 2015; Lever et al., 2014). For example, if environmental changes extirpate 198 

or reduce the abundance of the primary pollinator of a plant, or vice versa, then other 199 

generalist species depending on their functional traits may be able to fulfil the role of 200 

mutualist by engaging in flower visits (Figure 2; Aizen et al., 2012; Ashworth et al., 2015; 201 

Burkle et al., 2013; Memmott et al., 2004; Mitchell et al., 2009b; Waser et al., 1996; but see 202 

Kaiser-Bunbury et al., 2010; Winfree et al., 2014). Communities of generalist species, 203 

sharing similar functional traits, may have high inter-specific competition between pollinators 204 

for shared floral resources or between plants for pollinator functional groups (Johnson and 205 

Steiner, 2000; Mitchell et al., 2009a; Rosas-Guerrero et al., 2014; Figure 2), especially under 206 

scenarios of declining wildflower or pollinator populations (see sections 2 & 4).  There is, 207 

however, some evidence from empirical data coupled with simulation modelling that 208 

increased network nestedness (high fraction of shared interactions) may facilitate an increase 209 

in the number of species constituting the community (Bastolla et al., 2009; Lever et al., 210 

2014).  In contrast, some plant species have floral traits that have co-evolved to be 211 

specifically adapted to the feeding apparatus of one or a minority of insect pollinator species, 212 

thereby representing a relatively exclusive mutualism. For example, the secretion of nectar at 213 

the base of a deep corolla or spur is associated with visitation by long-tongued insects (Arditti 214 

et al., 2012), or flowers whose anthers require pollen release by vibration (sonication) are 215 

pollinated by insects whose thoracic flight muscles can vibrate at an appropriate resonant 216 

frequency – process known as buzz pollination (De Luca and Vallejo-Marin, 2013). 217 

 218 

 219 

 220 
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 221 

Figure 2| Simplified and hypothetical plant-pollinator network, showing a community of four 222 

insect pollinator species and four flowering plant species and the potential consequences of 223 

localised species extinction(s) to network structure. Scenario A) Pollinators 1-3 and plants A-224 

C show a generalist mutualism, where each pollinator and plant has a preferred relationship 225 

(shown by line thickness and colour), but will also visit / receive other inter-specifics to 226 

subsidise their nectar or pollen intake / pollen transport. The strength of the mutualism may 227 

be dependent on pollinator competition, for instance: pollinator 1 has a preference for plant A 228 
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and can theoretically competitively exclude (to some degree) pollinators 2 and 3 from visiting 229 

plant A (Brosi and Briggs, 2013; Sauve et al., 2014). Pollinator 4 has a longer tongue 230 

compared to the other pollinators, and a specialised mutualism with plant D with no 231 

competition from the other pollinators as they are unable to reach the nectar reward at the 232 

base of plant D’s long corolla. Thus, pollinator 4 has a high preference, or dependency, on 233 

plant D. Scenario B) Loss of pollinator 2 (i.e. local extinction) changes the preference (or 234 

dependency) of the other two pollinators due to competitor release: plant B receives higher 235 

visitation rates from pollinator 1 and 3 compared to when pollinator 2 was previously present. 236 

This shows that the generalist network has a level of redundancy where other pollinators with 237 

similar functional traits (i.e. tongue length) can fill the role of pollinator 2 and maintain a 238 

population of plant B in the community an example of network re-wiring. In contrast, loss of 239 

plant D is likely to affect pollinator 4 more significantly, and dependent on the ability to visit 240 

short corolla flowers, will reduce population size, showing there is lower redundancy in this 241 

specialist network. Scenario C). If pollinator 4 were to be lost this would cause localised 242 

extinction of plant D. Loss of pollinator 1 will cause competitive release for pollinators 2 and 243 

3, but with loss of plant D, it will likely change preferences (or dependency) for plant A and 244 

B as well. It will likely strengthen the preference between pollinator 2 and plant B as less 245 

floral resources are available. Pollinator 3 will have to change its preference to plant A as it 246 

will encounter high competitive exclusion when visiting plant B. 247 

 248 

Having numerous specialist mutualisms within a plant-pollinator community, 249 

whereby the plant and pollinator are specialised on each other (and interact with fewer other 250 

species) may increase overall functional trait diversity. However, this may result in low 251 

functional redundancy at the community network level due to a lack of substitutable species 252 

traits or, in other words, there are a small number of pollinators and/or plant species 253 

possessing compatible functional traits to fill the functional gap should either mutualist 254 

decline (Figure 2; Mouillot et al., 2013; Weiner et al., 2014). The spectrum of interactions 255 

spanning generalist to specialist interactions is important in determining how some plant-256 

pollinator relationships remain relatively stable under environmental change, whilst others 257 

may not (Burkle and Alarcon, 2011; Burkle et al., 2013; Dalsgaard et al., 2013). Moreover, 258 
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when floral resources are limited generalist species may gradually replace specialists due to 259 

their ability to forage on a range of resources (Carre et al., 2009; Scheper et al., 2014; Waser 260 

et al., 1996). At a habitat scale, we would expect maintenance of pollinator species richness 261 

to be linked to maintenance of high floral trait diversity, and vice versa. This highlights the 262 

importance of conserving bio-diverse habitats to maintain ecosystem functioning and 263 

importantly the provision of ecosystem services (Balvanera et al., 2006; Bartomeus et al., 264 

2013; Cardinale et al., 2006; Daily, 1997). 265 

 266 

Bees are frequent and effective pollinators of wildflowers and agricultural crops 267 

(Kleijn et al., 2015). Social bees (e.g. honeybees, bumblebees, stingless bees), in particular, 268 

have become a focus of insect pollinator studies, in which the numerical abundance of 269 

workers per colony make them a dominant ‘pollination service provider’ in many landscapes. 270 

The domestication of honeybees has allowed humans to exploit their pollination service by 271 

transporting colonies in man-made hives to sites with high pollination demand (Breeze et al., 272 

2011; Potts et al., 2010b; for bumblebee and solitary bee management see: Palomo et al. 273 

2015; Pitts-Singer and Cane, 2011; Velthuis and van Doorn, 2006). The significant loss of 274 

honeybee colonies each year (Lee et al., 2015; Neumann and Carreck, 2010; Oldroyd, 2007; 275 

Potts et al., 2010b), has raised concern, in both the food production industry and the public 276 

domain, for the effect on the overall pollination service that honeybees provide (Aizen and 277 

Harder, 2009; Polce et al., 2014). 278 

 279 

Compared to the large number of wild insect pollinators, pollinator research on the 280 

honeybee has received relatively high attention, with particular emphasis being placed on the 281 

current threats posed by parasites and disease (Brown, 2015; Genersch et al., 2010; Ratnieks 282 

and Carreck, 2010). Whilst there is little doubt that honeybee losses are of concern, the 283 
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importance of all remaining wild pollinators and the threats they face should not be 284 

overlooked (Figure 3; Ollerton et al., 2012; Winfree et al., 2007). Indeed, to have a 285 

sustainable pollination service we cannot rely on one or a few domesticated species. Rather, 286 

we must maintain a community constituting a diverse set of mobile pollinating organisms 287 

with a broad suite of functional traits to maintain pollinators with ‘insurance values’ to meet 288 

multiple pollination demands and prevent future pollination deficits (Albrecht et al., 2012; 289 

Breeze et al., 2014; Gagic et al., 2015; Garratt et al., 2014b; Hoehn et al., 2008; Isbell et al., 290 

2011; Mallinger and Gratton, 2015; Martins et al., 2015; Orford et al., 2015; Winfree et al., 291 

2007; but see: Winfree et al., 2015). Crop pollination services can be enhanced when having 292 

a diverse community of insect pollinators (Brittain et al., 2013a, 2013b; Greenleaf and 293 

Kremen, 2006; Hoehn et al., 2008). Moreover, native and/or wild pollinators are more 294 

efficient at pollinating certain plant species than honeybees (Figure 3; Garibaldi et al., 2014; 295 

Jauker et al., 2012; Rader et al., 2013; Stanley et al., 2013; Thomson and Goodell, 2001; 296 

Vicens and Bosch, 2000; Woodcock et al., 2013), and that long tongued wild pollinators can 297 

effectively pollinate plants that may not be accessible for short-tongued pollinators such as 298 

honeybees (Willmer, 2011). Yet despite the clear importance of wild pollinators, we have as 299 

yet: i) a limited understanding of their population status; ii) major gaps in our knowledge of 300 

the factors that threaten them and the subsequent impairment to the services they provide; and 301 

iii) still much to learn about how we can change our actions and refine our approaches to help 302 

maintain healthy pollinator populations and sustain valuable pollinator services.  303 

 304 

 305 

 306 
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 307 

 308 

Figure 3| Figure taken and adapted from Garibaldi and colleagues (2013) who performed an 309 

analysis to investigate the pollination service of honeybees versus wild insect pollinators in 310 

41 animal pollinated crop systems across the globe. Plot shows the difference between the 311 

average regression coefficients (β+, ±95% CI) for pollen deposition and fruit set. The figure 312 

shows that whilst foraging honeybees deposit a higher amount of pollen on con-specific 313 

flowers compared to wild insect pollinators, they are less effective at pollinating the plant as 314 

measured by the level of fruit set which was higher in wild insect pollinators. This supports 315 

the importance of conserving a healthy community of native pollinators in these agricultural 316 

areas. 317 

 318 

This paper posits that to sustain pollinator services and meet increasing pollination 319 

demands (Aizen et al., 2008a), we must understand how to support and maintain healthy 320 

pollinator populations and communities. The aim of this paper, therefore, is to provide a 321 

perspective on the research advances required for us to better understand the risks posed to 322 

wild pollinators and the services they provide, whilst detailing approaches we could adopt to 323 

better mitigate such threats. We touch on most of the factors previously implicated as threats 324 

to wild insect pollinators (see section 2) and consider the implications of our arguments to 325 

relate to the status of insect pollinators in agricultural and urban landscapes. We further place 326 
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much of our discussion in the context of the developed world where rural settings are often 327 

dominated by intensive farming, and urban areas have well-developed infrastructures. Whilst 328 

we also reference the global literature for our discussion of current knowledge and evidence 329 

gaps, we concentrate on the schemes and initiatives taking place within Europe, and 330 

especially the UK, for our case-studies to support future action plans and approaches. 331 

However, the concepts, knowledge and perspectives we discuss here have broad implications 332 

for the conservation of pollinators and their services worldwide. 333 

 334 

 335 

2. Major threats to the pollination service provided by insects 336 

 337 

Multiple factors likely act in combination to impose an overall level of stress on insect 338 

pollinator populations (Bryden et al., 2013; Goulson et al., 2015; Perry et al., 2015; 339 

Vanbergen et al., 2013). Implicated factors include climate change, habitat fragmentation, 340 

land-use change and associated chemical inputs to the environment (i.e. agrochemicals), 341 

invasive species and the added pressures of predation and competition (Godfray et al., 2014; 342 

Gonzalez-Varo et al., 2013; Goulson et al., 2015; Kerr et al., 2015; Morales et al., 2013; Potts 343 

et al., 2010a; Vanbergen et al., 2013, 2014a). Infection by parasites (and pathogens) also 344 

poses a particular biotic threat, for example wild populations of the western honey bee, Apis 345 

mellifera, have largely disappeared across Europe and N. America which may be attributed to 346 

the parasitic mite Varroa destructor (Rosenkranz et al., 2010) and the viruses it transmits (Le 347 

Conte et al., 2010; Sumpter and Martin, 2004). Managed honey bee colonies survive due to 348 

significant prophylactic and reactive management techniques, and wild bumblebees are also 349 

threatened by a range of emerging diseases (see section 4.3; N. America: Cameron et al., 350 

2011; UK: Fuerst et al., 2014; McMahon et al., 2015; S. America: Arbetman et al., 2013; 351 
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Schmid-Hempel et al., 2014). Given that many parasites appear to be both generalists and 352 

transmitted via flowers, it is likely that solitary bees and other insect pollinators are also at 353 

risk, but we currently lack the appropriate data to gauge such threats. 354 

 355 

Whilst efforts have been made to quantify the effect of each factor alone, gaining 356 

reliable measures of their overall impact, particularly interactions, has proven difficult 357 

because of large differences in morphology and life-history among taxa. Theoretical studies 358 

suggest that a combination of stressors may be sufficient to trigger failure of social bee 359 

colonies (Bryden et al., 2013; Perry et al., 2015), yet empirical studies looking at interactive 360 

effects are typically limited to two (or few) factors (Baron et al., 2014; Becher et al., 2013; 361 

Doublet et al., 2015; Fauser-Misslin et al., 2014; Gill et al., 2012; Gonzalez-Varo et al., 2013; 362 

Hoover et al., 2012; Kennedy et al., 2013; Kleijn and van Langevelde, 2006; Oliver et al., 363 

2012; Pettis et al., 2013; Schweiger et al., 2010; Vanbergen et al., 2013). Land-use change 364 

and management is seen as one of the leading drivers of insect pollinator declines (Garibaldi 365 

et al., 2014; Ollerton et al., 2014; Vanbergen, 2014). The rapid habitat transformation over 366 

recent decades, predominantly due to anthropogenic activity, appears correlated with reported 367 

declines in insect pollinator species richness (Potts et al., 2010a; Senapathi et al., 2015). 368 

Taking the UK as an example, we have seen at least a 97% loss of wild flower meadows 369 

since the 1930s (Fuller, 1987) at the same time as a significant increase in the levels of 370 

agricultural intensification and urbanisation (National Ecosystem Assessment 2011, 371 

www.gov.uk/ecosystems-services). During this period, the UK has seen contractions in the 372 

geographic ranges of a number of insect pollinator species, as well as declines in species 373 

richness at local scales and species extinctions at the national scale (Biesmeijer et al., 2006; 374 

Carvalheiro et al., 2013; Goulson et al., 2005; Nieto et al., 2014; Ollerton et al., 2014; 375 

Senapathi et al., 2015; Thomas et al., 1994, 2004), although the rate of these declines may 376 
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have decreased more recently (Carvalheiro et al., 2013).  377 

 378 

 With increasing demands for food security and consumer pressure for affordable 379 

produce, extensive areas of previously natural landscapes have been transformed to intensive 380 

crop monocultures providing little nutritional resource to support insect pollinators if non-381 

flowering, or little nutritional diversity and/or quality if it is (Bates et al., 2011; Decourtye et 382 

al., 2010; Garibaldi et al., 2011b; Jha and Kremen, 2013a; Kennedy et al., 2013; Kremen et 383 

al., 2002; Raine and Gill, 2015; Steffan-Dewenter and Westphal, 2008; Tscharntke et al., 384 

2005; Winfree et al., 2011a). Accelerating agricultural intensification across the globe over 385 

the past five decades is deemed a major cause of biodiversity loss (Batary et al., 2011; Foley 386 

et al., 2011). Land clearance and removal of hedgerows for intensive agriculture decreases 387 

overall wildflower diversity and abundance (Carvell et al., 2006; Holzschuh et al., 2008; 388 

Rundlöf et al., 2008) and can restrict suitable nesting sites (Goulson et al., 2010; Knight et al., 389 

2009; Williams et al., 2010). To protect crops against pest species, agrochemicals such as 390 

pesticides are applied (Figure 4; Meehan et al., 2011), which may be having inadvertent 391 

detrimental effects on insect pollinator behaviour, physiology, brood rearing and foraging 392 

performance (Desneux et al., 2007; Exley et al., 2015; Fischer et al., 2014; Gill and Raine, 393 

2014; Gill et al., 2012; Palmer et al., 2013; Whitehorn et al., 2012), leading to potential harm 394 

of wild pollinator populations (Brittain et al., 2010; Rundlöf et al., 2015). This highlights one 395 

of the ironies of modern agricultural practice; that by intensively growing flowering crops we 396 

degrade the natural landscape that supports healthy pollinator populations and subsequently 397 

degrading the very pollination service that the flowering crops benefit from (Figure 4). 398 

Consequently, stress induced impairment to pollinator foraging ability could be having 399 

negative impacts on the efficacy of the pollination service they provide (Gill and Raine, 400 

2014), however to our knowledge, this expectation has not been explicitly tested. Viable  401 
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Figure 4| Relative value (financial income) and financial expenditure of pollination services 402 

and various pesticides. Value of pollination (green bar) was estimated to be worth $168.75bn 403 

in 2009 (re-valuated from €153bn estimation by Gallai et al., 2009). Cost of these services, 404 

considered to be money invested into action to protect and promote pollinators through land-405 

use management and health related interventions, however, is unknown. The cost of various 406 

pesticides was extracted from the United States Environmental Protection Agency for 2006-407 

2007 Market Estimates. The value of each of these groups was then crudely calculated as an 408 

upper estimate of 500% return (Pimentel et al., 1993). The total value and expenditures of the 409 

four pesticides categories were summed for "Total Pesticides" (grey bar). "Other" pesticides 410 

include the nematicides, molluscicides and alternative chemicals (e.g. sulphur). 411 

  412 



20 | P a g e  

 

options to practice lower intensity farming and / or maintaining larger areas of semi-natural 413 

habitats is likely to provide a more sustainable option in supporting insects for their 414 

pollination service (see Section 4.6; Andersson et al., 2012; Bartomeus et al., 2014; Bohan et 415 

al., 2013; Garibaldi et al., 2011b; Holzschuh et al., 2008; Kennedy et al., 2013; Kleijn and 416 

van Langevelde, 2006; Ricketts et al., 2008). 417 

  418 

 For most insect pollinator groups, species richness has been reported to be in decline 419 

across much of Europe (Biesmeijer et al., 2006; Bommarco et al., 2012a; Carvalheiro et al., 420 

2013; Conrad et al., 2006; Nilsson et al., 2013; Ollerton et al., 2014; Senapathi et al., 2015; 421 

Wenzel et al., 2006) and N. America (Burkle et al., 2013; Cameron et al., 2011) over the last 422 

several decades. Other areas of the globe may have also suffered from similar declines over 423 

this time scale, but to date we have limited data to investigate this with any certainty. Our 424 

understanding of major changes in insect pollinator species richness at broad spatial scales is 425 

improving, yet we are still limited in what we can conclude from the data due to it being 426 

either: i) at a low spatial resolution (coverage across large regional scales is patchy); ii) of 427 

variable accuracy of location and sampling area (i.e. range from ±100s to ±10,000s of 428 

meters), which is problematic given that pollinators vary in dispersal ability; iii) limited to a 429 

number of repeated measures at standardised times both within and across seasons / years; iv) 430 

uses non-standardised sampling methods, making data comparison from multiple sources 431 

difficult; v) obtained from multiple, different sources, which can introduce methodological 432 

artefacts; vi) inconsistent in the level of taxonomic identification (i.e. down to family, genus 433 

or species level); and, vii) perhaps most crucially, a general lack of data on species 434 

abundance (at given spatial and temporal scales). 435 

 436 

Identifying the drivers that shape insect pollinator population abundance requires both 437 
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high resolution data and universally standardised methods (Maes et al., 2013). The resulting 438 

datasets should also be complemented by research focused on more localised population 439 

changes. Whilst this type of data is missing for most insect pollinator groups, we can learn a 440 

lot from data collected for butterflies, from databases such as for the UK Butterfly 441 

Monitoring Scheme in which long term population data can allow powerful standardised 442 

estimation of abundance in order to explore population trends and impacts of environmental 443 

change (Oliver et al., 2010; Thomas, 2005; Thomas et al., 2011). Encouragingly this kind of 444 

approach, further incorporating ‘citizen scientists’, is being adopted more widely, for 445 

example by the National Pollinator Strategy for England  (Figure 5) and the France-wide 446 

monitoring scheme Spipoll (http://www.spipoll.org; Deguines et al., 2012). Gaining a greater 447 

coverage of pollinator abundances, and thus pinpointing of localised population changes in 448 

multiple locations across different geographic regions, enables a more coherent 449 

understanding of the likely drivers of population change and consequent effects on ecosystem 450 

services.  451 

 452 

 453 

3. Steps in the right direction to protect insect pollinator services: policy 454 

actions 455 

  456 

 Mitigating threats to insect pollinator services has become an important issue for 457 

policy and the public. A range of conservation initiatives have been developed to improve 458 

understanding of the risks posed, and how to deliver a sustainable pollination service at 459 

global, regional and national scales (Table 2). Advancing ecological research into insect 460 

pollinators requires an understanding of where current policy stands and how research 461 

approaches can answer or inform stated objectives. At the global stage, the Intergovernmental 462 

http://www.spipoll.org/
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Platform on Biodiversity and Ecosystem Services (IPBES; est.2012 and with 124 member 463 

states), recognises the need to provide policy-relevant knowledge to inform decision making. 464 

Identified as a globally important thematic topic, the assessment of “Pollinators, pollination 465 

and food production” (incl. insect pollinators) is being conducted on the basis that 466 

‘pollination services’ are of fundamental significance. National pollinator initiatives / 467 

schemes require robust evidence if stated objectives are to be well justified, achievable, 468 

transparent, and critically to be of high societal relevance (see Table 2 in Appendix). 469 

  470 

 The recently launched National Pollinator Strategy for England (Defra, 2014) 471 

provides an exemplary case study, in which an independent review of the “status and value of 472 

pollinators and pollination services” was commissioned to provide a framework for future 473 

action (Vanbergen et al., 2014a). This led to the declaration of four main objectives to: i) 474 

support pollinators on a variety of land types; ii) enhance responses to pest and disease risk; 475 

iii) raise awareness of what pollinators need to survive and thrive; and, iv) improve the 476 

evidence on the status of pollinators and the service they provide. These objectives were 477 

accompanied by statements of approach for how they should be achieved, by: a) developing 478 

and field testing a new monitoring framework to provide abundance data for insect 479 

pollinators and to integrate citizen science; b) assessing economic, social and cultural values 480 

of pollinators; and, c) to better understand how agricultural practices, in particular crop 481 

protection, affect insect pollinator populations (see Section 4 and Figure 5). The strategy also 482 

encourages the research community to carry out longer-term studies that policy-makers need, 483 

and policy makers to maintain a continuity of policy approach across different parliaments, 484 

negating the traditional short-term government view that can often hinder conservation 485 

actions (Pullin et al., 2009).  486 

 487 
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  488 
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Figure 5| Recently launched National Pollinator Strategy for England (Defra 2014) 489 

highlights five objectives to maintain sustainable pollinator services. Although each objective 490 

addresses a particular key area, and has actions targeted to that area, many of the issues 491 

addressed in the Strategy are interlinked, and each objective supports the other. Addressing 492 

one action (open boxes) will in many cases contribute to another either directly or through 493 

one of six main themes. Here, the actions of the Strategy are shown colour coded and 494 

connected to allow navigation and an intuitive overview. Coloured rings show which 495 

objectives are linked to a particular theme. 496 

 497 

To support wild insect pollinators, agricultural land can be managed to deliver a broad 498 

array of public goods, by combining food production alongside other ecosystem services such 499 

as maintaining culturally valuable insect pollinator habitats. Within the EU, for instance, the 500 

Common Agricultural Policy (CAP) can compensate agricultural land managers (i.e. farmers) 501 

for direct losses to income when altering the intensity of farming practices to better support 502 

biodiversity and public goods. Through agri-environment schemes (AES) financial 503 

compensation is provided to help offset loss of income from setting-aside land that could 504 

otherwise be cultivated (‘opportunity cost’), and estimated implementation costs such as the 505 

purchase of flowering plant-seed or costs of additional management (see sections 4.5 & 4.6; 506 

Batary et al., 2011; Garibaldi et al., 2014; Rundlöf et al., 2013). AES can be used to target 507 

ecosystem services that generate yield benefits in agriculture, such as insect pollination, 508 

although this objective should be clearly separated from their use to conserve biodiversity, 509 

because the necessary actions are likely to be different (Ekroos et al., 2014, Kleijn et al., 510 

2015). In England, the new AES launched in 2015, named Countryside Stewardship, includes 511 

the ‘Wild Pollinator and Farm Wildlife Package’ designed to incentivise farmers to provide 512 

additional resources for insect pollinators. 513 

 514 

 Pesticides used for crop protection pose a potential risk to non-target beneficial 515 
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insects, with foragers coming into contact with residues in the environment (Desneux et al., 516 

2007; Osborne, 2012). Particular concerns have been raised about the application of plant-517 

systemic neonicotinoid insecticides to flowering crops attractive to insect pollinators 518 

(primarily bees). Reactions to the viewpoint that neonicotinoids place insect pollinators at an 519 

unacceptable risk, the EU placing a restriction on the use of three neonicotinoids as seed 520 

treatments (EFSA Commission Implementing Regulation (EU) no. 485/2013), and moves 521 

haven been made in some states of Canada and the United States to reduce neonicotinoid use. 522 

However, whilst restrictions may be viewed by some as a step-in-the-right-direction in 523 

protecting insect pollinators, it has also been the subject of criticism, with questions being 524 

raised over the assessment of the evidence underpinning this decision (Eisenstein, 2015) by 525 

intensively growing flowering crops we degrade the natural landscape that supports healthy 526 

pollinator populations and subsequently degrading the very pollination service that the 527 

flowering crops benefit from. Whichever standpoint is taken, understanding the balance 528 

between the benefit of crop protection and costs of impairment to a pollination service should 529 

be the overall objective to achieve a pragmatic solution (Figure 4). Any review should 530 

consider what the alternative methods of crop protection would be in order to sustain 531 

adequate crop yields, to minimise off-site contamination to organisms other than insect 532 

pollinators, and to be of low hazard to humans (Godfray et al., 2014; Raine and Gill, 2015). 533 

 534 

4. Understanding and mitigating specific threats to wild insect pollinators 535 

to protect pollinator services 536 

  537 

 Understanding the responses of insect pollinators to environmental stressors is 538 

important in understanding how we can manage a sustained pollinator service for the future, 539 

making it a major priority for both research and policy (Vanbergen et al., 2014a). Given the 540 
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complexity of these biological systems, we must avoid approaching pollinator management in 541 

a naïve or overly simplistic manner otherwise our chances of meeting targets for pollinator 542 

services may be compromised. For example, engineering areas of land set-a-side to support 543 

pollinators cannot be assumed to be effective if landscape context and land-use type have not 544 

been considered. Whilst the objective is to increase biodiversity, many actions will only 545 

support increased numbers of common pollinator species rather than re-establishing 546 

endangered species (Scheper et al., 2013). It would be unfortunate if advisory actions to 547 

support pollinators were communicated to end users based on poorly informed decisions 548 

resulting in little practical and conservation impact, as the ramifications are likely to result in 549 

a loss of confidence in policy advice along with unwarranted financial costs (Pe’er et al., 550 

2014). 551 

  552 

 Key questions include how should we structure and maintain habitats to support insect 553 

pollinators and increase subsequent services, and at what scale should this be implemented if 554 

stakeholders are going to benefit, whilst ensuring that subsidies are not wasted. Here we 555 

highlight some key evidence gaps, to refine our research efforts and ensure we better 556 

understand how to maintain stable insect pollinator populations and structured communities 557 

that are resilient to imposed stress. We consider seven primary themes, and for each we 558 

discuss the evidence gaps and the research steps we can take to advance our understanding. 559 

The steps raised within each theme are not in competition with each other, and in many cases 560 

represent complimentary approaches in providing a generalised framework to direct future 561 

research in addressing the evidence gaps..  562 

 563 

4.1 Understanding the stability of insect pollinator communities 564 

  565 
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 The stability of ecosystem functioning requires ecological resilience, which is the 566 

capacity of a population, community or ecosystem to buffer environmental perturbations and 567 

re-organise whilst undergoing change without loss of structure or functioning (Cardinale et 568 

al., 2012; Folke et al., 2004; Holling, 1973). The key question is what level of perturbation 569 

can be buffered when extreme events occur, such as an acute local pollution episode, severe 570 

habitat disturbance or rapid climate change? Plant-pollinator mutualisms are embedded 571 

within a wider network of community interactions (Memmott, 1999; Pocock et al., 2012). 572 

While plant-pollinator interactions are dynamic, the topology or structure of the network is 573 

thought to confer a degree of stability or robustness upon the community (Bascompte et al., 574 

2003; Kaiser-Bunbury et al., 2010; Memmott et al., 2004; Olesen et al., 2007; Ramos-575 

Jiliberto et al., 2012; Thebault and Fontaine, 2010; Tylianakis et al., 2010; Valdovinos et al., 576 

2013; Vieira and Almeida-Neto, 2015). There is, however, much debate over the extent that 577 

different properties of network architecture confer stability or robustness to species loss 578 

(Rohr et al., 2014). For example, species that are highly abundant and well connected to 579 

many other species in the network, typically generalists, may increase overall network 580 

robustness (Winfree et al., 2014). However, other evidence suggests that increased network 581 

connectance (the proportion of possible links between species) may lead to a greater chance 582 

of extinction cascades following species loss (Vieira et al., 2015), and the structuring of these 583 

connections appears important with predictions that increased network nestedness imparts 584 

stability (Allesina & Tang 2012; James et al., 2012). Moreover, behavioural plasticity means 585 

that a pollinator species can potentially ‘rewire’ the network by switching to alternate plant 586 

species following extirpation of a partner pollinator species, thereby maintaining the overall 587 

community cohesion (Figure 2; Kaiser-Bunbury et al., 2010; Ramos-Jiliberto et al., 2012; 588 

Valdovinos et al., 2013). Hence, this highlights the importance of ensuring we have a diverse 589 

set of insect pollinators to maintain taxonomic or functional trait diversity (i.e. species 590 
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complementarity or functional redundancy), which serves to deliver a diverse set of 591 

pollination services even in the face of species losses (Bartomeus et al., 2013; Moretti et al., 592 

2009; Woodcock et al., 2014; also see Kleijn et al. 2015).  593 

 594 

 Despite this apparent potential for an intrinsic stability to pollinator-plant networks, 595 

there is increasing evidence of parallel declines in species richness of flowering plants and 596 

their pollinators (Biesmeijer et al., 2006; Burkle et al., 2013; Cameron et al., 2011; 597 

Carvalheiro et al., 2013; Ollerton et al., 2014). These declines may be linked to ecological 598 

traits like diet specialisation or particular habitat requirements that predispose particular 599 

pollinator species to extinction risk under environmental change (Aizen et al., 2012; 600 

Biesmeijer et al., 2006; Williams et al., 2010). For example, in areas experiencing significant 601 

transitions to more homogenous landscapes such as intensive arable monocultures, short 602 

tongued generalist species of insect pollinators may be less affected than long tongued 603 

specialists due to the concomitant loss of habitat(s) that maintain specific plants (Figure 2; 604 

Goulson et al., 2005). Simulation modelling of empirical data shows that if the most 605 

connected species in plant-pollinator networks are lost, then this may trigger a cascade of 606 

secondary extinctions of plants or pollinators (Kaiser-Bunbury et al., 2010; Memmott et al., 607 

2004; Vieira and Almeida-Neto, 2015). The implication is that if environmental change 608 

reaches a level sufficient to extirpate these highly linked species then there is a risk that the 609 

whole plant-pollinator network could disassemble and jeopardise the continued delivery of 610 

insect pollination in that ecosystem (Lever et al., 2014). Other research shows these highly 611 

connected species tend to also be the most abundant and hence among the least vulnerable to 612 

extinction under environmental change (Winfree et al., 2014). Recent advances in such co-613 

extinction modelling that incorporates variable dependences of different mutualistic partners, 614 

and hence greater biological realism, should improve our ability to predict the likelihood of 615 
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extinction cascades and the role of network structure in community stability (Vieira and 616 

Almeida-Neto, 2015).  617 

 618 

 There remain several notable research challenges. First, we need to better understand 619 

how networks are assembled or disassemble under rapid environmental change or in response 620 

to agricultural land management (Devoto et al., 2007; Vanbergen, 2014; Vanbergen et al., 621 

2014b). Second, we need to identify, through coupled experimental and predictive modelling 622 

approaches the extent that different network properties (nestedness, connectance, modularity) 623 

contribute to community dynamics or stability (Astegiano et al., 2015; Tylianakis et al., 624 

2010). Third, how can extinction-driven alteration of network structure affect the delivery of 625 

crop pollination services and wild plant reproduction (Bohan et al., 2013; Tixier et al., 2013). 626 

It is increasingly being recognised that species interactions, such as pollination, and the 627 

services derived from them are an important measure of biodiversity that has been largely 628 

overlooked due to the disproportionate emphasis on the species (nodes) within ecological 629 

networks, rather than their links (Ings et al., 2009). For example, at what point does the 630 

erosion or reorganisation of plant-pollinator networks by anthropogenic drivers lead to loss of 631 

the links that confer functional redundancy upon the system and what is the magnitude of the 632 

impact on pollination services and plant reproduction (Aizen et al., 2008b, 2012; Burkle et 633 

al., 2013; Devaux et al., 2014; Stout, 2014; Vanbergen et al., 2014b)? To answer such 634 

questions we need to explore the mechanistic linkages between network assembly and 635 

pollination processes across replicated environmental gradients and experimentally 636 

manipulate field systems. Coupled with this, we should consider how other scientific 637 

disciplines have transformed our understanding and ability to quantify network structure and 638 

function (Heleno et al., 2014). For example, pollinator network ecology is currently 639 

underpinned by traditional field approaches (e.g. visitation transects) and taxonomic expertise 640 
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that provide data on the identity and frequency of mutualists but which are time-consuming. 641 

Recent advances in molecular techniques has given rise to the possibilities of rapidly 642 

analysing field collections to enable measures of taxonomic diversity and a high-throughput 643 

quantification of species abundance (Bohmann et al., 2014; Keller et al., 2015; Richardson et 644 

al., 2015), to re-construct with high precision and accuracy the structure of different plant-645 

pollinator assemblages (see next section 4.2; Vacher et al., 2015). These molecular 646 

approaches will also enhance our ability to robustly monitor pollinator populations (Dicks et 647 

al., 2013; Lebuhn et al., 2013), and quantify pollinator community structure under different 648 

environmental stresses or contexts.  649 

 650 

4.2 Using molecular approaches to monitor insect pollinators 651 

 652 

 Obtaining data to study insect pollinator population sizes and pollinator network 653 

ecology are reliant on taxonomic identification of species and counts of individuals. For 654 

monitoring purposes, quantitative surveys (recording richness and abundances of organisms) 655 

are preferable to qualitative surveys (establishing only presence of species per locality: Kerr 656 

et al., 2015), but both suffer from time consuming sorting, identifying and counting plant and 657 

pollinator diversity, making it slow and financially costly for active management (Lebuhn et 658 

al., 2013). Moreover, taxonomic experts are needed regularly but this may not be possible if 659 

experts are few and in high demand. Researchers are therefore exploring the developments of 660 

novel molecular tools to aid the efforts in both identification and quantification (Kuhlmann, 661 

2015), with the aim of providing greater taxonomic precision, a robust method of monitoring 662 

aspects of pollinator populations and to quantify pollinator community structure under 663 

different environmental conditions (Tang et al., 2015). The overall objective is to monitor 664 

reliably across multiple sites to gain spatial aspects of pollinator community structure 665 
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repeatedly over time to assess trends and react adaptively to protecting insect pollinator 666 

services. 667 

 668 

Employing molecular taxonomy through ‘DNA barcoding’ using the mitochondrial 669 

cytochrome oxidase (COI) marker (particularly for insects) has now become relatively 670 

commonplace (Hebert et al., 2003; Magnacca and Brown, 2012; Schmidt et al., 2015). By 671 

cross-referencing sequences obtained from collected tissue samples to the growing global 672 

database of barcodes that are linked to taxonomically well-studied specimens, we can use 673 

these short, standardised gene regions to identify species rapidly and reliably (Figure 6). 674 

Furthermore, such molecular identification is not limited by the state of the specimen, for 675 

instance an insect pollinator specimen can be identified at any developmental life-stage or 676 

even from non-living remains in the environment (eDNA) (Taberlet et al., 2012), or ingested 677 

by predators. However, the frequently low differentiation between species and high 678 

geographic variation within a species means we need to understand how well the COI marker 679 

and its genetic variation capture the species limits. Thus, judicious use of COI-based genetic 680 

clusters (sometimes referred to as Operational Taxonomic Units (OTUs)) is usually 681 

acceptable for monitoring purposes, but these entities should be backed up by careful and 682 

accurate morphological examination (Meyer and Paulay, 2005).  683 

 684 

 DNA barcoding of European bees has now progressed to the point where COI 685 

sequences are available for many species (Schmidt et al., 2015) and are accessible through 686 

the global Bee Barcode of Life Initiative (Bee-BOL) (http://www.bee-bol.org). Similarly, 687 

there is a well-populated DNA barcode database for butterfly species (including all 59 British 688 

spp.), but to date no orchestrated effort has been made to complete a DNA barcode database 689 

for other pollinator groups. The practicality of populating these databases is aided by the 690 

http://www.bee-bol.org/
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possibility to generate sequence data from preserved specimens, as those in museum 691 

collections, which can establish the link to known vouchers of taxonomic relevance or to 692 

monitor change over time against historical specimens (Hebert et al., 2013; Timmermans et 693 

al., 2015). The resulting database of reference sequences then becomes part of a growing 694 

framework of genotypes from wider surveys that extend the biogeographic, ecological and 695 

taxonomic scope of pollinator studies. 696 

 697 

Despite this power, DNA barcoding is time-consuming because it requires working 698 

with individual specimens, and so next-generation sequencing (NGS) technology may be 699 

preferred, which can potentially survey specimens in bulk and circumvent the need to 700 

separate and sort samples (e.g. captured insect pollinators in a pan trap). The most 701 

straightforward and cost efficient approach is ‘metabarcoding’ that applies the principle of 702 

DNA barcoding to a bulk sample by conducting PCR and sequencing on the mixture allowing 703 

an indiscriminate field collection to be analysed (Figure 6; Creer et al., 2010; Gibson et al., 704 

2014; Taberlet et al., 2012; Vacher et al., 2015; Yu et al., 2012). Massively parallel NGS 705 

technologies produce numerous independent sequence reads, each corresponding to a 706 

separate PCR amplicon, which may originate from any species in the mixture. In addition, 707 

primer indexing permits the simultaneous sequencing of numerous samples (e.g. from 708 

multiple pan traps), keeping costs low. However, this methodology is associated with various 709 

problems such as biases in amplification success across different taxa, which may create false 710 

negatives (Clarke et al., 2014; Tang et al., 2015), contamination risk and potential co-711 

amplification of mitochondrial pseudogenes (Song et al., 2008), and the comparatively short 712 

sequence achievable with the current NGS technology, which limits the analysis of the COI 713 

gene to roughly a half-length ‘minibarcode’ and hence reduces discriminatory power (Tang et 714 

al., 2015). 715 



33 | P a g e  

 

 716 

Figure 6| DNA barcoding, metabarcoding and mitochondrial metagenomics pipelines. A) 717 

Specimens collected (e.g. pan trap) must first be identified by expert taxonomists. For DNA 718 

barcoding, specimens and all downstream processes must be kept separate. The DNA from 719 

each representative specimen is extracted separately, amplified by PCR at specific loci (i.e. 720 

COI) and Sanger sequenced, to produce a reference database for use for metabarcoding (B) 721 

and mitochondrial metagenomics (C). B) Metabarcoding does not require the sorting of bulk 722 

samples. Whole samples are homogenised into a ‘soup’ and DNA is extracted directly from 723 

this. PCR is performed on this bulk DNA extract with primers designed for a shorter read 724 

length to accommodate the possible sequencing output of the next generation sequences. 725 

Multiple bulk samples can be analysed simultaneously if differently indexed primers are used 726 

for each sample; these indexed primers can be used to sort the samples out bioinformatically 727 
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after sequencing. Next generation sequencing of the PCR products is performed after which 728 

bioinformatics pipelines are used to extract unique sequence reads. These reads are 729 

retrospectively identified using the DNA barcode reference database. C) Mitochondrial 730 

metagenomics is also performed on bulk samples. DNA extracted from homogenised soups 731 

do not undergo a PCR step, instead the raw DNA from the DNA extract is shotgun 732 

sequenced. Different samples can be sequenced simultaneously if they are prepared in 733 

differently labelled libraries. The sequence output is bioinformatically cleaned, quality 734 

checked, parsed into mitochondrial DNA, and assembled into mitochondrial genomes. These 735 

mitochondrial genomes are then identified using the reference database. 736 

 737 

Given these drawbacks, the use of PCR-free methods is desirable. Current approaches 738 

similarly analyse mitochondrial genomes, but exploit the fact that mitochondria are abundant 739 

(ca. 200 copies per nuclear genome; Correa et al., 2012) and thus are naturally enriched over 740 

other markers. Total DNA is extracted from a bulk sample of specimens and subjected to 741 

shotgun sequencing to produce millions of short reads. Genome assembly from these reads 742 

produce full or partial mitochondrial genomes for each of the species present in the mixed 743 

sample. This approach, known as mitochondrial metagenomics (Crampton-Platt et al., 2015), 744 

was recently applied to bee communities and provides powerful ‘super-barcodes’ used as a 745 

reference library (Tang et al., 2015). These reference mitochondrial genomes are used to 746 

profile any number and mixture of specimens that may be collected (for example in field pan 747 

traps that attract and collect flying insect pollinators). Shotgun sequences from the bulk 748 

sample are matched against the reference library thus revealing the presence and absence of 749 

species from the read-matches. Crucially, this analysis requires many fewer reads than the 750 

initial assembly of generating the mitochondrial genome references. Profiling success using 751 

this approach has been high (>95%, taking into account false presences and absences 752 

combined: Gómez-Rodríguez et al., 2015), and much higher than using metabarcoding (Tang 753 

et al., 2015). In addition, studies have established the correlation of read number with 754 

abundance and biomass (Gómez-Rodríguez et al., 2015; Tang et al., 2015; Zhou et al., 2013), 755 
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and thus read matching can potentially be used for assessment of species abundance (we 756 

therefore can obtain both qualitative and quantitative survey results; Figure 7). Tang et al. 757 

(2015) calculated that for large-scale monitoring of pollinator communities using the read 758 

mapping approach which is approximately 50% less labour intensive than the conventional 759 

survey work based on morphological identifications. Alternative approaches for abundance 760 

measures may come from rapid barcoding techniques conducted by PCR directly on the 761 

specimens (no DNA extraction) and short reads that could potentially sequence tens of 762 

thousands of specimens whose identification is based on sequence data on which to base the 763 

specimen count (Meier et al., 2015; Tang et al., 2015; Wong et al., 2014).  764 

 765 

 766 

Figure 7| Read-matching of sequences. A) Specimens caught in a pan trap of unknown 767 

identity and quantity can be homogenised and shotgun sequenced. In this example, the only 768 

sequences present in the sample match to two of the four species in the DNA reference 769 

library. Furthermore, given that the number of sequences matching the amount of 770 

representative DNA in the extract, the number of sequence reads should correlate with the 771 

amount of DNA in the original sample, and given that the amount of DNA present per 772 

specimen should correlate with the biomass of the specimen, obtaining a quantification of the 773 
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number of specimens per species is possible with an appropriate calibration. B) Commensals 774 

of the specimen can be elucidated with the read-matching approach. DNA from the carried 775 

pollen, parasites and pathogens, as well as that from the pollinator, are present in the DNA 776 

extract. In this example, the identity of the bee, the pollen from three plant species and the 777 

disease agents are shown using a read-matching approach. 778 

 779 

Beyond the estimates of abundance, the advantage of metagenomic sequencing is that 780 

the sequence reads are mostly a complete reflection of the entire ecosystem, including those 781 

organisms associated to the pollinator specimens (Bohmann et al., 2014). These methods 782 

offer the potential to study plant-pollinator networks as DNA from bulk samples contains not 783 

only pollinator DNA, but also any associated organic material such as pollen, parasites and 784 

pathogens (Figure 7). Using a read-matching approach, matching DNA from pollen would 785 

allow the practitioner to populate plant-pollinator networks in a more direct fashion than 786 

studies using visitation as a proxy (King et al., 2013), and more rapidly, reliably and to a 787 

higher resolution than microscopy methods (Kraaijeveld et al., 2015). Presently plant 788 

identification via molecular approaches still rely on several short chloroplast barcodes but 789 

whole chloroplast genome sequencing is expanding rapidly, which will overcome the 790 

problem of low chloroplast abundance in the pollen, currently addressed with sequencing of 791 

the nuclear ITS region (Bohmann et al., 2014; Keller et al., 2015; Richardson et al., 2015; 792 

Sickel et al., 2015). Matching parasites and disease agents (section 4.3), and the associated 793 

pollinator microbiome, would allow assessment of pollinator community health as well as its 794 

diversity and abundance. Metagenomics could be used to detect EIDs in wild pollinators, a 795 

largely unknown and neglected system or even the spill-over of these diseases from managed 796 

to wild pollinators (Goulson and Hughes, 2015). While molecular approaches have been 797 

tested to screen bees for disease agents (Fürst et al., 2014; Graystock et al., 2014), these are 798 

PCR based and therefore target specific diseases with primers that need to have close affinity 799 

with the targets. A metagenomics approach does not suffer from a primer biases and so it 800 
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would be possible to detect all of the diseases simultaneously. 801 

 802 

4.3 How do parasites shape wild insect pollinator populations? 803 

 804 

 Wild pollinators exist in complex and diverse assemblages. In unperturbed 805 

assemblages, endemic parasites may control populations of individual species when showing 806 

host specialisation, or, if they are multi-host parasites act through apparent competition to 807 

modulate the relative abundance of different species (Dobson, 2004; Holt and Pickering, 808 

1985). In perturbed assemblages, where the abundance of subsets of species is depressed 809 

through human impacts, effects of reservoirs (where one host acts as the major carrier of the 810 

parasite) and spill-overs (where the parasite is transmitted from reservoir to non-reservoir 811 

hosts) may drive host species with anthropogenically reduced populations to extinction 812 

(Daszak 2000; de Castro and Bolker, 2005; Dobson 2004). Emerging infectious diseases, 813 

which are not confined to pollinators, may also threaten population declines or species 814 

extinction if they spread rapidly and have high impacts on individual fitness (de Castro and 815 

Bolker, 2005). Hence, understanding the top-down pressure placed on insect pollinator 816 

populations by endemic and emerging parasites, alongside infectious diseases (EIDs), is 817 

important given that maintaining healthy populations is a prerequisite for a healthy 818 

pollination service (Brown, 2015). For example, concerns have been raised over the effect 819 

that parasites and infectious diseases are having on the overall pollination service provided by 820 

honeybees, as individual infection can impair individual foraging performance (Wolf et al., 821 

2014), and high prevalence in colonies can lead to significant problems (Dainat et al., 2012; 822 

Higes et al., 2008; Martin, 2001; Nazzi et al., 2012).  823 

  824 

 Our understanding of endemic parasites and EIDs in wild pollinators is largely limited 825 
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to bumblebees, although parasites and disease in managed honey bees are also well known 826 

(Genersch et al., 2010). Our knowledge of the situation in wild solitary bees, hoverflies, and 827 

other pollinators, is limited to point samples of individuals in space and time (Evison et al., 828 

2012; Singh et al., 2010). Whilst our knowledge of endemic parasites in bumblebees is 829 

relatively broad and deep (Schmid-Hempel, 1998), we know almost nothing about how they 830 

interact with the population dynamics of their hosts. This is a specific example of the larger 831 

issue, in that we simply do not understand the relative importance of the putative drivers of 832 

wild pollinator population dynamics in the field. Similarly, we have only a vague idea of the 833 

distribution and abundance patterns of endemic parasites, although studies using regional 834 

(Durrer and Schmid-Hempel, 1995), and continent-scale (Cordes et al., 2012) approaches are 835 

starting to fill this gap. In contrast, studies of EIDs in wild bumblebees have explicitly taken 836 

large-scale geographical approaches, with parasites, some associated with population 837 

declines, being mapped in N. America (Cameron et al., 2011), S. America (Schmid-Hempel 838 

et al., 2014) and the United Kingdom (Fürst et al., 2014; McMahon et al., 2015). 839 

 840 

 If we are to understand the impact of endemic parasites and EIDs on wild pollinator 841 

populations and its subsequent effect on pollinator services, a number of key questions need 842 

to be addressed. First, we need to map the drivers of population dynamics and identify the 843 

relative importance of endemic parasites and EIDs within this larger picture. This requires 844 

studies of population dynamics within and across years at the same site (see next section 4.4), 845 

and the quantification of potential limiting resources, predators, and parasites. Second, the 846 

directionality of EIDs needs to be confirmed – who is giving what to whom across the 847 

season? And the degree of impact of EIDs on wild pollinators needs to be determined in 848 

laboratory studies (Graystock et al., 2013). Third, we need to understand the drivers of 849 

parasite population and epidemic dynamics within and across species. This will require a 850 
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range of approaches, including eco-immunology, field observation and landscape analyses. 851 

Specifically, we should be attempting to map the ‘parasite exposure landscape’, that is, the 852 

distribution and abundance of parasites in the environment (both in hosts and on flowers; 853 

Anderson et al., 2013), and how this relates to the probability of becoming infected. This is 854 

likely to vary over spatial and temporal scales across the landscape, but by identifying key 855 

‘hubs of transmission’ we may be able to focus our conservation efforts, and investigate 856 

whether such hubs geographically overlay with hotspots of high pollination demand. 857 

 858 

4.4. Understanding insect pollinator population responses to resource availability 859 

 860 

 Meeting local pollination demands reliably and throughout the year requires large 861 

insect pollinator populations to provide numerical and functional responses to temporal 862 

changes (Lautenbach et al., 2012; Polce et al., 2014), and to be stable with long-standing 863 

residency in local areas (Klein et al., 2012). A realistic concept of a stable population is one 864 

that shows resilience to environmental perturbation by rapidly recovering from induced 865 

reductions in population size (a ‘bounce back’; Holling, 1973; Steiner et al., 2006). It is 866 

therefore important we understand how populations respond to imposed stress to protect 867 

populations from reaching tipping points that trigger population crashes (Bryden et al., 2013; 868 

Dai et al., 2012; Drake and Griffen, 2010; Lever et al., 2014). Population resilience is largely 869 

dependent on population size, with small populations being vulnerable to bottleneck events 870 

with proportional losses of individuals, compared to large populations, likely having a higher 871 

impact on effective population size (Fagan et al., 2001; Hanski and Saccheri, 2006; Shaffer, 872 

1981), increasing population susceptibility to future stress and chances of inbreeding 873 

depression (Frankham, 1995a, b) and ultimately local extinctions (Lawton and May, 1995; 874 

Saccheri et al., 1998). We therefore need to understand what habitat requirements are 875 
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important for pollinator life-histories, and how variation in resource availability impacts on 876 

population dynamics (Yamamura et al., 2006).  877 

 878 

 We can start by first targeting research to help conserve key species or groups that 879 

provide a highly valued pollinator service (Kleijn et al., 2015, Winfree et al., 2015). In 880 

designing and managing supportive habitats, we need to understand a habitat’s carrying 881 

capacity for the pollinator(s) in question, taking into consideration habitat size (which can 882 

influence resource diversity, potentially resource quality, and positively correlates with 883 

absolute resource abundance although not necessarily resource density) and compositional 884 

heterogeneity (Blaauw and Isaacs, 2014b; Fahrig et al., 2011; Tscharntke et al., 2002). 885 

Importantly, we must consider particular habitat features that meet fundamental life-history 886 

requirements (Blaauw and Isaacs, 2014a, Dicks et al., 2015). For an insect pollinator, the 887 

primary habitat requirements are likely to be: i) floral and other nutritional resources, ii) nest 888 

(breeding) sites, and iii) levels of protection (Figure 8; Fortel et al., 2014; Williams and 889 

Kremen, 2007; Wray and Elle, 2015). The floral preferences of a large diversity of insect 890 

pollinators have been well studied (see section 4.6; Willmer, 2011), and significant advances 891 

have been made in understanding how to attract species or communities to engineered or 892 

enhanced floral rich habitats (although other predatory or parasitic insects require other 893 

available organisms to survive). However, we understand little of whether such habitats are 894 

able to ‘retain’ resident populations in the long term with any constancy. Therefore, shifting 895 

some of the research focus towards better understanding requirements ii and iii, can help us to 896 

understand the ‘retention capability’ of habitats. To do this we need to understand more about 897 

the micro-habitat requirements for nesting (breeding) sites and where these sites are spatially 898 

and temporally located. Though our knowledge base on wild bees is improving significantly 899 

(Goulson et al., 2010; Knight et al., 2009; Williams et al., 2010), we rarely find nests that fail. 900 
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Furthermore, we understand even less about what composite features of a habitat provide 901 

protection from threats such as predators and weather conditions (Boggs and Inouye, 2012). 902 

 903 

 Spatial and temporal variation of resources will have impacts on the basic properties 904 

underpinning population dynamics, namely: i) the basic demography (birth and death rates) 905 

and age structure of a population; and, ii) the immigration and emigration of individuals in 906 

and out of local (sub-)populations. Although assessment of simple birth rates appears at first-907 

glance a basic task, it is in actuality rather challenging, as insect pollinators are often small 908 

and hard to track (Hagler and Jackson, 2001), with nest sites often being inconspicuous. 909 

Unlike honeybees where close monitoring of colonies has provided detailed insights into 910 

social colony dynamics (Becher et al., 2013, 2014; Khoury et al., 2011, 2013; Naug, 2008), 911 

there is a comparative lack of data on the levels of successful hatching, rearing and adult 912 

development for most insect pollinators. Gaining knowledge on seasonal emergence times 913 

and dispersal behaviour would inform us of the best times for sampling pollinators to provide 914 

indirect data on hatching successes. Furthermore, development of methods to help find and 915 

identify nests aided by local knowledge of pollinator natural history, would be advantageous. 916 

Pollinator fecundity and hatching success is likely to be related to the availability of 917 

nutritional resources (O'Brien et al., 2003; Vaudo et al., 2015), which may be increased by 918 

providing enhanced floral resources in the landscape (Dicks et al., 2015; Holland et al., 2015; 919 

Morandin and Winston, 2006). But to effectively support a population throughout the season 920 

comprehensive knowledge of plant-pollinator phenologies are required to ensure that 921 

resources are available for crucial stages of the life-cycle (Memmott et al., 2010), as biasing 922 

resources towards specific age sector(s) of the population may leave other sectors vulnerable.   923 
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 924 

Figure 8| Representation of a rural scene, depicting a typical patchwork of habitat types across the landscape (not to scale). This highlights some 925 

of the factors that influence residency and movement of pollinators across the landscape.  926 
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  927 

 Susceptibility to different environmental pressures is likely to vary at different life 928 

cycle stages of an insect pollinator. Gaining a better understanding of this will enable 929 

implementation of habitat features that can increase protection at different times of the year.  930 

Floral resource availability, for example, is not only important leading up to laying, but also 931 

crucial to build nutritional reserves in preparation for species that hibernate (i.e. storing fats) 932 

if starvation is to be avoided  (Beekman et al., 1998; Brown et al., 2003; Leather et al., 1993), 933 

and flowers should be located relatively close geographically to hibernation sites. Moreover, 934 

the overwintering sites need to be suitable to enable individuals to overcome the demands and 935 

exigencies of hibernation. Hence, efforts should be refined to aid individuals at critical life 936 

stages in order to mitigate populations experiencing severe ‘demographic pinch points’. 937 

 938 

Repeated and long term monitoring of species at specified sites, including employing 939 

mark-recapture methods, will be key to understanding the population biology of insect 940 

pollinators (see sections 2, 3 and all sub-sections of section 4; Drag et al., 2011; Hagler and 941 

Jackson, 2001). However, observation of individuals in a habitat patch may represent a 942 

temporary immigration, instead of a permanent population enhancement (Jonsson et al., 943 

2015), a tactic used by pollinators to access requirements that may be limited in other 944 

neighbouring patches – a process known as ‘habitat complementation’ (Dunning et al., 1992; 945 

Mandelik et al., 2012; Tarrant et al., 2013). Hence, dispersal ability is likely to determine 946 

how well such meta-populations can cope with increasing habitat fragmentation (Fahrig, 947 

2001), an area that would benefit from further research (Jauker et al., 2009; Rands, 2014). 948 

Studies have shown that foraging abilities of flying insect pollinators range widely (Cant et 949 

al., 2005; Carvell et al., 2012; Gathmann and Tscharntke, 2002; Greenleaf et al., 2007; 950 

Knight et al., 2005; Osborne et al., 1999; Pasquet et al., 2008), and this will be further 951 
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influenced by climatic variables, such as temperature and wind-speed. To inform habitat 952 

management practices, efforts should be focused on advancing our understanding on the 953 

foraging / dispersal abilities in different landscape complexities for a diverse set of 954 

pollinators (Figure 9), taking into consideration the combination of size and eco-955 

physiological strategies (Gathmann and Tscharntke, 2002; Niitepold et al., 2009; Pawar et al., 956 

2012), and how such demands may influence susceptibility to other threats. In a rapidly 957 

changing world, it is important to understand how meta-populations ranging from numerous 958 

small (and fragmented) local populations showing low connectivity (low gene flow), through 959 

to fewer large and well-connected populations (high gene flow) can cope under different 960 

environmental settings and landscape structural complexity (Figure 8; Tscharntke et al., 961 

2002; Weibull et al., 2000), and crucially how this has a consequent effect on pollination 962 

service (Holland and DeAngelis, 2001).  963 

 964 

 965 

4.5 Engineering flowering field margins as habitats to attract insect pollinators 966 

  967 

 Engineering of certain habitats can increase the delivery of floral resources, nesting 968 

areas and protection to support a greater insect pollinator abundance and richness of insect 969 

pollinators which can in turn provide a pollination service to improve crop yields, including 970 

its reliability and quality (Klatt et al., 2014; Kleijn et al., 2006). Unfortunately, understanding 971 

how to engineer the ‘optimal’ agricultural field margin has not proved to be simple to 972 

achieve. Crops differ in the level of pollination and the community of insect pollinators 973 

required (Albrecht et al., 2012; Fruend et al., 2013), and pollinator species may also differ in 974 

their resource requirements throughout the year (Olesen et al., 2008). Wild insect pollinators 975 

also differ in their mobility and foraging strategies (Greenleaf et al., 2007) and consequently 976 



45 | P a g e  

 

the amount and spatial configuration of engineered habitats should determine their 977 

effectiveness (Brosi et al., 2008). Furthermore, engineered margins are not necessarily always 978 

needed or desirable; a farmer growing predominantly non-flowering crops does not 979 

necessarily need a pollination service, so if they were to invest in engineering a pollinator 980 

supportive margin the purpose would be for ecological (rather than economic) reasons. The 981 

requirement of engineered margins, therefore, needs to be determined with guidance on 982 

regional or landscape specific pollinator community abundance or on-farm monitoring 983 

schemes. Moreover, relying on engineered margins alone is risky because establishment of 984 

the sown species can fail and this requires removing land from production. Therefore,  a 985 

better option may be to supplement existing habitats that also support insect pollinator 986 

communities (Franzen and Nilsson, 2008; Ricketts et al., 2008; Wood et al., 2015a). Thus 987 

when managing floral rich habitats we should consider whether it will compliment, rather 988 

than conflict, with other blooming periods from other floral sources nearby (Williams et al., 989 

2010), and acknowledge that this will differ in areas where crops are non-flowering versus 990 

flowering (Figure 9; Raine and Gill, 2015). The value of such natural or semi-natural habitats 991 

in agricultural areas remains largely undefined although national and international projects 992 

(www.quessa.eu) are underway to address this gap. 993 

  994 

 The first step in designing engineered margins is to identify whether a pollination 995 

deficit exists for crops, and the extent to which this deficit varies between regions with 996 

different landscape complexities (Marshall et al., 2006). Variation is expected because 997 

existing habitats will differ in the floral resources they provide and in their abundance and 998 

distribution across landscapes. The level of deficit is known for some crops (Aizen and 999 

Harder, 2009; Lautenbach et al., 2012; Polce et al., 2014), although varietal differences exist 1000 

and are not well understood (Klein et al., 2007). Information about landscape-scale provision  1001 
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 1002 

 1003 

Figure 9| Foraging options to central place foragers (such as bees) is dependent on their 1004 

foraging range. A) Taken from Raine & Gill (2015) this is a conceptual diagram showing 1005 

some general types, and typical proportions, of habitats that are available to foraging 1006 

pollinators in rural landscapes. Pollinator species show a wide range in dispersal abilities 1007 

which can limit the total amount of suitable habitats that can be viably visited. Evidence 1008 

shows that individual honeybees have a much larger foraging range than either bumblebees 1009 
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or solitary bees (see section 4.4). B) Foraging ranges of solitary bees drawn around the 1010 

location of an engineered floral field margin strip (black line). Map depicts the real cropping 1011 

and semi-natural habitats found on a farm in Dorset, UK, with 160m representing the 1012 

minimum (grey line) foraging range and 600m the maximum (blue line) (Gathmann and 1013 

Tscharntke, 2002). Ranges allow a visualisation of: i) which areas the field margins are likely 1014 

to have an effect on, regarding attraction of resident solitary bees; ii) which areas bees are 1015 

able to reach were they to nest or reside in one of the field margins and act as a central 1016 

forager. Pollinators with small foraging ranges have the potential to be isolated from 1017 

neighbouring populations; intriguingly even at a maximum foraging distance, solitary bees 1018 

may be unable to travel between field margins and thus connecting habitats are likely 1019 

required in such a setting (the landscape map was generated for the QuESSA project funded 1020 

by the EU and provided with permission from John Holland). 1021 

 1022 

is scarce (Richards, 2001; Steffan-Dewenter et al., 2002), but is needed if the requirement for 1023 

additional floral or nesting resources is to be identified spatially and temporally (Figure 8). 1024 

Engineered margins have typically been designed to support bumblebees by planting their 1025 

most preferred foraging plants (Fabaceae), however, evidence is now emerging about the 1026 

value of other insects that have different foraging preferences (Wood et al., 2015b; 1027 

Woodcock et al., 2013). Data are limited but a few studies suggest that perennial wildflower 1028 

mixes may support a wider range of pollinators (Dicks et al., 2010), and floral richness is as 1029 

important as floral abundance, with insect pollinators shown to have increased growth rates 1030 

and immuno-competence from being fed diverse diets (Di Pasquale et al., 2013; Vaudo et al., 1031 

2015). Achieving the desired habitat, however, does present challenges because sown plant 1032 

species may not always establish and can depend on soil type, the plant’s establishment 1033 

method, competition between sown and unsown plants and subsequent management (Pywell 1034 

et al., 2011). 1035 

  1036 

 We next need to understand how such engineered habitats are utilised by insect 1037 



48 | P a g e  

 

pollinators and whether they can realistically subsidise nearby crop pollination. The value of 1038 

flower-rich habitats is typically measured through assessment of pollinator abundance and 1039 

species richness relative to other habitats (Carvell et al., 2007), and is likely influenced by the 1040 

composition and complexity of the landscape (Scheper et al., 2013; Shackelford et al., 2013). 1041 

Surprisingly, it is still poorly understood whether the attraction of pollinators to flowering 1042 

crops is enhanced with nearby engineered habitats, although the positive influence of semi-1043 

natural habitats has to some extent been demonstrated (Chacoff and Aizen, 2006; Kleijn and 1044 

Sutherland, 2003; Klein et al., 2003; Kremen et al., 2004; Morandin and Winston, 2006). 1045 

Even where the level of crop pollination has been quantified it is usually measured by proxies 1046 

such as pollinator abundance in the field or resulting crop yield, rather than pollen transfer, 1047 

visitation rates or plant fitness (King et al., 2013; Liss et al., 2013).  1048 

  1049 

 Quantifying the measures needed to achieve the desired pollinator community, is 1050 

important, whether these are enhancement of existing habitats or establishment of new 1051 

flower-rich and nesting areas. Guidelines on the proportion of flower-rich habitats needed in 1052 

the landscape are appearing (Holland et al., 2015; Morandin and Winston, 2006), but also 1053 

with evidence of redistribution rather than population enhancement that require further 1054 

investigation (see section 4.4; Jönsson et al., 2015). To maximise the potential of engineered 1055 

margins and minimise the amount of land removed from production to support pollinators 1056 

(Figure 10), the following steps could be adopted. i) For each flowering crop and main 1057 

varieties identify whether pollination is needed and which pollinators are likely to provide 1058 

this service. ii) Assess the landscapes in which the crops are produced for alternative floral 1059 

and nesting resources through the pollinator activity period to identify potential resource gaps 1060 

(see section 4.4). iii) Engineer margins using plant species that will not encourage crop pests 1061 

or diseases. iv) Carry out small-scale trials of engineered margins to compare different  1062 
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 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

Figure 10| Six primary steps to maximise the potential of engineered margins to support wild 1077 

pollinators whilst minimising the amount of land removed from production. Between the 1078 

Design and Small-scale-trial stages feedback will be required to ‘optimise’ management 1079 

towards the target pollinator(s). Scaling up from Small-trial to Large-trials may have different 1080 

and unforeseen outcomes, therefore, the dashed line represents feeding this information back 1081 

to the design stage if this were to occur. 1082 

 1083 

establishment methods across a range of soil and climatic conditions, and measure usage by 1084 

pollinators and how this is enhanced within adjacent crops. v) Conduct larger-scale trials of 1085 

engineered habitats across the landscape. vi) Evaluate the economic implications (a type of 1086 

cost-benefit analysis) of removing land from production to provide the service in comparison 1087 

to the increase in crop value. Step v should address spatial scales that consider abundance 1088 

decay curves (estimated time of disappearance) from engineered habitats, requirements for 1089 

corridors and existing resources provided by other non-crop and cropped habitats, and it 1090 

should also evaluate whether crop pollination is improved relative to that in control areas. 1091 
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Such an approach could be conducted in conjunction with habitat development for natural 1092 

enemies that also function as pollinators (e.g. certain hoverflies) or require similar resources 1093 

(e.g. parasitoids that require nectar; Wratten et al., 2012).  1094 

 1095 

4.6 How might we improve the wider countryside to support insect pollinators 1096 

 1097 

 A number of mitigation strategies are being implemented to conserve or enhance 1098 

threatened biodiversity in agricultural landscapes. These often integrate conservation 1099 

objectives with extensive farming practices in the same landscape, although many of these 1100 

actions target more generic provision of resources for a range of wildlife rather than 1101 

pollinators per se (Pywell et al., 2012). Specific actions of the AES for pollinators, such as 1102 

retaining patches of uncropped flower-rich habitat and of planting floral resources (e.g. for 1103 

declining bumblebee species), can increase the local abundance and species richness of 1104 

foraging pollinators (Scheper et al., 2013; Wood et al., 2015b). In England, there is also now 1105 

a Wild Pollinator and Farm Wildlife Package in the Countryside Stewardship that aims to 1106 

support pollinators through provision of flower-rich and nesting habitats. A few studies show 1107 

that such actions also enhance pollination services to nearby crops (see section 4.5; Garibaldi 1108 

et al., 2014), but whether this reflects genuine increases in numbers or pollinators moving 1109 

around with consequent dilution of densities elsewhere is largely unknown (Carvell et al., 1110 

2014). So far, there is very little evidence that these actions make pollinator communities 1111 

more resilient, which the underlying policy aim. From a policy perspective, the key questions 1112 

are: i) what area and extent of land should be dedicated to such actions; ii) how should they 1113 

be deployed spatially to have the best chance of success; and, iii) how does it work in practice 1114 

(Dicks et al., 2015). 1115 

 1116 
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To date, the main focus for pollinator conservation actions has been on the design and 1117 

provision of mixtures of flowers, whilst largely ignoring other potentially limiting factors, 1118 

especially in temperate regions. These actions have traditionally focused on providing 1119 

particular taxa with specific floral needs: for example, the response of declining, longer-1120 

tongued bumblebees to the creation of legume-rich margins has received considerable 1121 

attention (Heard et al., 2007). More recent studies have tried to tackle the question of how 1122 

much flower-rich habitat is needed across different landscapes (Holland et al., 2015), 1123 

including detailed studies of how bumblebees respond to flower provision (Carvell et al., 1124 

2012; Heard et al., 2007), or how they alter their foraging patterns (Carvell et al., 2014), by 1125 

estimating how much pollen and nectar some common species need to raise their larvae 1126 

(Dicks et al., 2015). This has direct relevance as to whether the encouraged minimum area of 1127 

land set aside within the AES is sufficient, as evidence suggests that only common species 1128 

may benefit from current guidelines (Holland et al., 2015; Wood et al., 2015b). Therefore, the 1129 

question is whether we need to achieve some threshold percentage area before we will see 1130 

any significant effects on supporting stable insect pollinator assemblages? However, without 1131 

long-term pollinator trend data it is difficult to identify target levels. 1132 

 Whilst the wider pollinator community can respond positively to local habitat floral 1133 

management (Heard et al., 2012; Knop et al., 2006), there have been few studies of diversity 1134 

and abundance responses at the farm scale or above. This is important since agricultural 1135 

intensification influences biodiversity and ecosystem processes by reducing the 1136 

heterogeneity, composition and configuration of habitats at difference spatial scales 1137 

(Tscharntke et al., 2012). This is expected to have distinct effects on different pollinator 1138 

guilds and pollination services but remains largely unexplored (Carvell et al., 2011; 1139 

Holzschuh et al., 2007). There is still debate as to whether currently available AES are 1140 

enhancing farmland biodiversity efficiently (Kleijn et al., 2011), especially pollinators 1141 
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(Scheper et al., 2013). In addition, there is concern that AES may suppress yields (e.g. 1142 

through land-use costs), thereby increasing pressure on non-cropped habitats, with 1143 

unintended negative environmental consequences. There is thus a clear need to understand 1144 

and predict how wild pollinator community structure and functional attributes are altered by 1145 

AES delivery and landscape configuration, especially if a balance must be struck between 1146 

reducing the effects of multiple pressures and the wider need for more sustainable agriculture. 1147 

The pollinator communities associated with different habitat types, landscapes and regions 1148 

are being documented in various research projects and monitoring programmes (e.g. EU 1149 

project QuESSA, UK project Agriland) are now under development (Baldock et al., 2015; 1150 

Carvell et al., 2014). The relative importance of different specific resources or their spatial 1151 

layout to pollinator communities could be estimated using existing ecological knowledge of 1152 

many pollinators. These approaches could be combined in either highly parameterised 1153 

process-based models or more generic conceptual models to explore to what extent different 1154 

actions deployed in different scenarios at landscape scales meet biodiversity protection goals 1155 

or alter the delivery of more sustainable agriculture (Kremen et al., 2007; Lonsdorf et al., 1156 

2009; see: www.naturalcapitalproject.org/InVEST.html). 1157 

 1158 

4.7 Insect pollinators in urban areas   1159 

 1160 

 Pollinators in urban areas are relatively understudied in comparison to those in rural 1161 

habitats, although interest in how urban areas might sustain pollinator populations and 1162 

provide pollinator services has increased in recent years (Baldock et al., 2015; Bates et al., 1163 

2011; Bonaszak & Zmihorski, 2012; Geslin et al., 2013; Hernandez et al., 2009; Ireneusz-1164 

Hennig & Ghazoul, 2012; Sirohi et al., 2015). Pollinator services provided by insects in urban 1165 

areas include pollination for urban food production (i.e. subsistence growing of vegetables 1166 
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and fruits) and pollination of native plant species that grow in urban areas, as well as 1167 

providing aesthetic value to people desiring interaction with nature on their doorstep. Urban 1168 

habitats can harbour important insect pollinator diversity, with the pollinator fauna of our 1169 

towns and cities being at least as diverse as those of the surrounding countryside (Baldock et 1170 

al., 2015; Sirohi et al., 2015). Considering that urbanised land cover in many countries has 1171 

greatly expanded in the past few decades (for example, across UK (National Ecosystem 1172 

Assessment 2011) and Europe (Gerard et al., 2010)), and that globally the proportion of 1173 

people living in urban areas now exceeds 50% (UNFPA 2007), it is perhaps surprising that 1174 

we know relatively little about the impact of towns and cities on insect pollinator populations, 1175 

communities and networks (Geslin et al., 2013). Moreover, how should we manage urban 1176 

areas most effectively to benefit pollinators? Given the recent policy interest in pollinator 1177 

conservation (see section 3), practitioners require information and advice on how to manage 1178 

public and private urban land to benefit pollinators. This is challenging, because perhaps 1179 

more than any other habitat type, urban areas represent a matrix of different land use types 1180 

(Wray and Elle, 2015), from car parks to allotments. Larger areas with more pollinator 1181 

friendly habitat, such as nature reserves, parks, allotments and gardens, are connected by 1182 

strips of potentially pollinator friendly habitat including roadside verges, hedgerows, river 1183 

banks and canal towpaths, railway cuttings and embankments (Figure 11). Understanding 1184 

how pollinator populations develop within such a ‘grainy’ landscape requires understanding 1185 

of how habitat diversity, patch size and connectivity influences their meta-population 1186 

dynamics (Cane et al., 2006; Perovic et al., 2015). 1187 

  1188 

 We currently have a limited understanding of whether urban areas act as sources or 1189 

sinks for pollinator populations, either in terms of population numbers or genetic diversity. 1190 

We know that urban habitats can support high abundance and species richness of some 1191 
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pollinator taxa (bees) but not others (hoverflies) relative to farmland and nature reserves 1192 

(Baldock et al., 2015), yet we know very little of the connectivity of pollinator populations 1193 

across habitat types. Quantifying the scale and extent of pollinator movement into and out of 1194 

cities is crucial to understanding the role of urban pollinator populations in regional 1195 

ecosystem service provision. This issue is also linked to the roles of landscape features that 1196 

allow population dispersal – particularly linear features such as hedgerows, roadside verges 1197 

and waterways. It is important to know how habitat connectivity is influenced by pollinator 1198 

traits, such as levels of generality in plant associations, population structure (e.g. social vs 1199 

solitary bees) and observed relationships between body size and dispersal ability (Greenleaf 1200 

et al., 2007; Hagen et al., 2012). Questions associated with population structure can be 1201 

addressed using genetic analyses across urban-rural gradients, and across contrasting urban 1202 

habitat types, replicated in a range of towns and cities of different sizes. In addition, more 1203 

mark-release-recapture studies are required for direct estimation of dispersal and foraging 1204 

distances over single generation, ecological timescales (Chapman et al., 2003). 1205 

  1206 

 Little is known about the role of urban pollinators in mediating gene flow between 1207 

plant populations within and outside cities (Roberts et al., 2007). This will require a greater 1208 

understanding of the intricacies of pollen transport, for example by linking pollinator 1209 

dispersal with estimates of gene flow (Figure 11). On a landscape scale, rare long-range 1210 

pollen dispersal events may be more important for maintaining the genetic diversity of 1211 

populations than frequent but local pollen dispersal (Wilcock and Neiland, 2002). We also 1212 

need to understand the efficacy and impact of pollen flow between the many cultivars of 1213 

native or naturalised plant species grown in urban environments and native provenances in 1214 

surrounding non-urban habitats. Such gene flow has the potential to maintain genetic 1215 

diversity in native populations, or could harm them through outbreeding depression or 1216 
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genetic assimilation (Wilcock and Neiland, 2002). 1217 

 1218 

1219 
  1220 

Figure 11| Representation of an urban landscape showing a dynamic environment a) Can 1221 

insect pollinators be permanent residents in such habitats? A matrix of different land-use 1222 

types that may be deemed as pollinator friendly (e.g. allotments, gardens, or hedgerows), or 1223 

unfriendly (e.g. high density industrial, commercial or housing) areas. b) Are features such as 1224 

verges of roads and waterways (and railways) important in allowing pollinator movement to 1225 

connect patches of suitable resources within cities, as well as providing corridors for 1226 

pollinator and plant gene flow? c) Species richness in some urban areas can be comparable 1227 

with some rural areas (Baldock et al., 2015), and so we need to establish if urban areas act as 1228 

pollinator sinks, drawing in pollinators from surrounding rural areas, or as sources, 1229 

replenishing perturbed pollinator communities in rural areas. Either way, migration between 1230 

urban and rural areas may be important in mediating plant gene flow between visited flowers. 1231 

d) Bringing aesthetic value to urban areas by: observing pollinators on your doorstep, and 1232 

benefitting from their pollination service such as increasing the health of visually beautiful 1233 

flowering plants in parks, allotments and gardens. e) Increasing interest in urban food 1234 

production (such as garden beans pictured), both domestically and commercially, requires a 1235 
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healthy pollinator community in urban areas in a similar way to agriculture practices in rural 1236 

areas. 1237 

The growing of food in cities has increased dramatically in recent times; worldwide, urban 1238 

agriculture involves an estimated 100 million people (Eigenbrod and Gruda, 2015), covers an 1239 

area of at least 68 million hectares, and accounts for around 16% of lands devoted to crops 1240 

(Thebo et al., 2014). Previous studies have demonstrated that urban agriculture can support 1241 

diverse communities of bees and butterflies (Matteson et al., 2008; Matteson and Langellotto, 1242 

2010), but the value of the pollination services provided by pollinators in urban environments 1243 

remains unquantified (Lin et al., 2015). To understand the economic value of pollinators in 1244 

urban areas we need to identify the range and abundance of crops grown in urban areas, and 1245 

the role of insect-mediated pollen flow for these crops (Van Rossum, 2009, 2010). 1246 

Assessment of the ecosystem service value of urban pollinators requires estimation of the 1247 

economic value of their contributions both to urban agriculture, and crop production in 1248 

surrounding non-urban areas.   1249 

 1250 

 Management of urban habitats for pollinators requires understanding of how to 1251 

improve habitat quality, and of how to link good quality habitat patches in ways that best 1252 

support pollinator populations. Habitat connectivity is crucial to the maintenance of viable 1253 

populations and pollinator species richness; urban areas are thought to restrict gene flow in 1254 

some bumblebees (Jha, 2015; Jha and Kremen, 2013b) and some solitary bees (Davis et al., 1255 

2010). However, it is very likely that different urban habitat types vary markedly in their 1256 

impacts on dispersal and gene flow. We would expect pollinators to move more easily along 1257 

flowering linear features than across large areas of flower-free man-made surfaces (though 1258 

bees and butterflies will follow non-rewarding linear routes between flower patches; Cranmer 1259 

et al., 2012). Flower-rich road verges, for example, not only support pollinators, but also 1260 

provide potential dispersal routes, highlighting the need to develop management best 1261 
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practices for these and other linear features (Dicks et al., 2013; Hanley and Wilkins, 2015; 1262 

Henriksen and Langer, 2013; Hopwood, 2008; Noordijk et al., 2009; Wojcik and Buchmann, 1263 

2012). The growing popularity of planted wildflower meadows in cities will increase food 1264 

resources for pollinators, and perhaps more than any other single effect, individual human 1265 

behaviour (in terms of the way we plant and manage gardens and other green spaces, such as 1266 

parks and allotments) can exert significant impact on habitat quality for plants and 1267 

pollinators. 1268 

 1269 

  To date, few studies have examined the effect of management approaches on urban 1270 

pollinators, and those that have been carried out focus primarily on single sites (Blackmore 1271 

and Goulson, 2014; Garbuzov et al., 2015). To guide management practice, future work 1272 

needs to consider societal impacts as well as effects on biodiversity. We need to understand 1273 

and quantify the impact on public health and well-being from enhancing public green-space 1274 

for pollinators, and need to better understand the relationships between these benefits and the 1275 

cost and frequency of management interventions in urban areas (such as mowing or pesticide 1276 

application). Identification of general patterns, whilst appropriately accounting for site and/or 1277 

year characteristics, requires longitudinal studies monitoring insect pollinators to elucidate 1278 

the impacts of alternative management regimes and interventions over multiple sites and 1279 

years.    1280 

 1281 

 1282 

5. Considerations when developing future research and mitigation 1283 

strategies  1284 

 1285 

A major goal in supporting insect pollinators is to get the right balance between land-1286 
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use for anthropogenic activities, such as food production or urbanisation, versus the 1287 

responsibility we have in conserving healthy and diverse insect pollinator populations and 1288 

communities. To ensure we achieve this goal, a key approach to land management strategies 1289 

is to enact evidence-based decision making rather than adopting uniform responses to 1290 

political agendas. Policy initiatives designed to support excellent research to understand 1291 

pollinator sustainability, with the intention of using research outputs to better inform decision 1292 

making, should therefore be both applauded and supported. However, the challenges put 1293 

forward to the research community often comprise very broad questions and goals that may 1294 

not be straightforward to tackle or simple to implement. It is important that researchers 1295 

communicate and feedback with both clarity and transparency about their intended and 1296 

ongoing research, so that objectives can be developed in ways that are useful for researchers, 1297 

policy and practice, as by doing so any mitigation actions requiring development can be 1298 

achieved more rapidly and effectively.  1299 

 1300 

It is also important that we align research developments by considering the concerns 1301 

raised by stakeholders and identify areas which are suffering (or are at future risk) from 1302 

pollination deficits. Consequently, researchers should look to co-develop proposals with the 1303 

right balance of all stakeholders, from academic, conservation, industry, policy and 1304 

practitioner backgrounds, with their needs considered in order to apply research to the 1305 

practical world (Dicks et al., 2013; Turnhout et al., 2012). For instance, a common criticism 1306 

is the ambiguity of the term, ‘ecosystem service’, when describing the process of pollination. 1307 

When researchers use this term, it is important they consider the distinct difference between 1308 

the study of ecosystems functions and ecosystem services, by considering how their research 1309 

(for example on insect pollinators) also provides a direct or indirect socio-economic benefit, 1310 

and how actions might then be implemented by land managers to deliver pollination services, 1311 
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especially in the specific case of improving flowering crop production or the health of wild 1312 

flower populations. Furthermore, although understanding the specific risks posed to insect 1313 

pollinators is no doubt crucial, it is only one piece of the whole puzzle. The remaining pieces 1314 

required are to understand the actions required to mitigate such threats. To achieve this we 1315 

require knowledge about the likely uptake of certain schemes and the behaviours of end-users 1316 

that hopefully results in them taking action. Research needs to thus be tailored towards 1317 

informing effective management to better inform viable management of the land to support 1318 

insect pollinators. This latter point is critical because we need to consider wider values, such 1319 

as how we might best meet the needs of farmers / land owners in rural areas, or perhaps 1320 

planners, green space designers and residents in urban areas and consider providing the 1321 

aesthetic and cultural values to the public.  1322 

 1323 

Kennedy et al (2013), suggested that for each 10% increase in area of high-quality 1324 

habitat (for bees), for instance a conversion of intensively farmed agricultural land to a more 1325 

natural habitat land-use, could return around a 37% increase in species abundance and 1326 

richness (for wild bees). Achieving this goal, however, may prove difficult because economic 1327 

interests may conflict with conserving suitable habitats which is an issue of high relevance to 1328 

large scale agriculture that relies on efficient land-use. Land managers appear to be relatively 1329 

open to discussing the potential of managing land for pollinators, but they are looking for 1330 

clear, concise and balanced advice about how to most effectively do this with as little cost 1331 

and time incurred as possible. Thus, to most effectively deliver advice we must be 1332 

considerate of the pressures placed on them. Farmers can be classed as custodians of the 1333 

countryside, yet they are also businessmen and are under pressure to make a profit whilst 1334 

meeting consumer demands for the countryside. For farmers to heed to specific advice, 1335 

therefore, we should be attempting to provide a demonstrable, specific action, applicable to 1336 
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their businesses (a ‘true’ not hypothetical ecosystem service). If we perceive an action as 1337 

being an ecological enhancement of the land (in this case increasing stable pollinator 1338 

communities and / or pollinator diversity) we need to make this relatively cost effective and 1339 

make the link clear to how such an ecosystem service can provide potentially economic and / 1340 

or even aesthetic enhancement. Similarly, the same principle approach should be taken when 1341 

encouraging the general public to support insect pollinators, for instance, in designing garden 1342 

habitats to support a diverse set of insect pollinators. 1343 

 1344 

It is of further importance that the implementation of specific actions considers what 1345 

the short versus long-term effects will be (Blaauw and Isaacs, 2014a). For example, when 1346 

engineering habitats to help conserve insect pollinators, how long might it take for an 1347 

agricultural field margin or urban flower bed sown with a ‘pollinator friendly’ plant seed mix 1348 

to establish? How long does this plant community remain in flower and does the composition 1349 

of flower species change over time? How long does the floral community remain attractive to 1350 

insect pollinators, and how regularly does it need to be managed to keep it free of invading 1351 

non-flowering plants? As we have discussed, concerted research efforts and knowledge 1352 

exchange to determine and recommend the best implementation methods are thus required 1353 

(Arlettaz et al., 2010), but this must be followed up  with close monitoring to determine 1354 

whether such recommendations actually benefit target insect pollinators (Stem et al., 2005). 1355 

 1356 

 1357 

Contribution 1358 

 1359 

The order of author appearance broadly depicts the level of contribution to the paper: 1360 

RJG administered the development, organised and put together the paper; RJG and SGP 1361 
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contributed to conceiving ideas and comments on the paper. Figures were conceived and 1365 
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Appendix 

 

Table 2: Selected global, regional and national initiatives relevant to pollinators and 

pollination service. 

 Initiative name Scale Description 

1 Intergovernmental 
Platform on 
Biodiversity and 
Ecosystem Services 
(IPBES) 

Global Independent intergovernmental body established to strengthen the science-
policy interface for biodiversity and ecosystem services conservation and 
sustainable use of biodiversity, long-term human well-being and sustainable 
development. The “Pollinators, pollination and food production” 
assessment aims at enhancing policy responses to pollinator declines, and 
deficits in pollination.  

2 Convention on 
Biological Diversity 
(CBD) 

Global CBD programme on agricultural biodiversity has an International Initiative 
for the Conservation and Sustainable Use of Pollinators. In addition the CBD 
Aichi Biodiversity Targets cover pollinators and pollination services. 

3 International 
Pollinator Initiative 
(IPI) 

Global International Initiative for the Conservation and Sustainable Use of 
Pollinators Plan of Action consists of four basic elements: Assessment, 
Adaptive Management, Capacity Building, and Mainstreaming. FAO has 
been coordinating and facilitating the implementation of the IPI by 
undertaking, in collaboration with numerous partners, activities that 
contribute to the implementation of these four elements. 

4 Sustainable 
Development Goals 
(SDGs) 

Global SDGs will replace the Millennium Development Goals with a change in 
paradigm with biodiversity now having its own goal. Goal 15: “Protect, 
restore and promote sustainable use of terrestrial ecosystems…and halt all 
biodiversity loss” which will help  underpin Goal 2: “End hunger, achieve 
food security and adequate nutrition and promote sustainable agriculture”. 

5 Global Pollination 
Project 

Global Global Environment Facility (GEF) funded project to consolidate the 
knowledge base to inform good agricultural practices to improve food 
security, nutrition and livelihoods through enhanced conservation and 
sustainable use of pollinators (Brazil, Ghana, India, Kenya, Pakistan, Nepal 
and South Africa). The project is coordinated by the Food and Agriculture 
Organization of the United Nations, with implementation support from the 
United Nations Environment Programme (UNEP). 

6 Prevention of 
honeybee Colony 
Losses (COLOSS) 

Global COLOSS is an international, non-profit association headquartered in Bern, 
Switzerland focussed on improving the well-being of bees at a global level. 
COLOSS is composed of scientific professionals incl. researchers, 
veterinarians, agriculture extension specialists, and students from 69 
countries. 

7 Global Biodiversity 
Information Facility 
(GBIF) 

Global GBIF is an international open data infrastructure, funded by governments 
that allows anyone, anywhere to access data about all types of life on Earth, 
incl. many pollinator species, shared across national boundaries via the web. 

8 International 
Commission for 
Pollinator Plant 
Relationships 
(ICCPR) 

Global ICCPR has the following objectives to: (i) Promote and coordinate research 
on relationships between plants and bees; (ii) Organise meetings, colloquia 
or symposia related to the above topics, and to publish and distribute the 
proceedings; (iii) Collaborate closely with national and international 
institutions interested in the relationships between plants and bees, 
particularly those whose objectives are to expand scientific knowledge of 
animal and plant ecology, and fauna protection. 

9 Status and Trends 
of European 
Pollinators (STEP) 

Regional 
(Europe) 

Large scale research project funded by the EC which is assessing the status 
and trends of pollinators in Europe, quantifying the relative importance of 
various drivers and impacts of change, identifying relevant mitigation 
strategies and policy instruments, and disseminate this to a wide range of 
stakeholders.  

10 Sustainable 
pollination in 
Europe - joint 
research on bees & 
other pollinators 
(SUPER-B) 

Regional 
(Europe) 

SUPER-B is a knowledge exchange network bringing together scientific and 
societal communities involved in the conservation and sustainable 
management of ecosystem services mediated by pollinators 
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11 North American 
Pollinator 
Protection 
Campaign (NAPPC) 

Regional 
(N. 
America) 

NAPPC's mission is to encourage the health of resident and migratory 
pollinating animals in N. America to: (i) Raise public awareness and 
education and promote constructive dialogue about pollinators’ important 
to agriculture, ecosystem health, and food supplies; (ii) Encourage 
collaborative, working partnerships among participants and federal, state 
and local government entities. This will strengthen the network of 
associated organizations working on behalf of pollinators; (iii) Promote 
conservation, protection and restoration of pollinator habitat; (iv) 
Document and support scientific, economic and policy research - creating 
the first-ever, international data bank (library) of pollinator information 

12 African Pollinator 
Initiative (API) 

Regional 
(Africa) 

API has two main purposes to: (i) facilitate African country participation in 
the International Pollinator Initiative's (IPI) global pollinator project; and (ii) 
improve pollinator biodiversity conservation, and the pollination of crops 
and wild plants through networking. 

13 Oceania Pollinator 
Initiative (OPI) 

Regional 
(Oceania) 

Key functions of the OPI are to: (i) 1.Monitor pollinator decline, its causes 
and its impact on pollination services; (ii) Address the lack of taxonomic 
information on pollinators; (iii) Assess the economic value of pollination and 
the economic impact of any decline; (iv) Promote conservation, restoration, 
and sustainable use of pollinators in agriculture and ecosystems. 

14 England’s National 
Pollinator Strategy 
(NPS) 

National 
(England, 
UK) 

NPS vision is to see pollinators thrive, so they can carry out their essential 
service to people of pollinating flowers and crops, while providing other 
benefits for our native plants, the wider environment, food production and 
overall human welfare. 

15 Brazilian Pollinator 
Initiative (BPI) 

National 
(Brazil) 

BPI focuses on national policies, research, scientific meetings and learning 
activities. A national evaluation on pollinator and pollination status in Brazil 
is under construction, and strategies and actions are underway to 
consolidate the Brazilian Pollinators Network. 

16 White House – 
Pollinator Research 
Action Plan 

National 
(USA) 

As part of a larger Federal strategy to ensure pollinator health, President 
Obama issued the Presidential Memorandum “Creating a Federal Strategy 
to Promote the Health of Honey Bees and Other Pollinators.” The 
memorandum called on the Federal government to draft a pollinator 
research action plan 

17 Wales Action Plan 
for Pollinators 

National 
(Wales, 
UK) 

Welsh Government has worked with industry and stakeholders to look in 
more detail at the evidence and issues around pollinators and their 
conservation in Wales. Following consultation the Action Plan for Pollinators 
sets the strategic vision, outcomes and areas for action to improve 
conditions for pollinators and work to halt and reverse their decline in 
Wales. 

18 Canadian 
Pollination Initiative 
(CANPOLIN) 

National 
(Canada) 

CANPOLIN was a large scale research project addressing the growing 
problem of pollinator decline in agricultural and natural ecosystems in 
Canada.  

19 French National 
Action Plan 

National 
(France) 

A ten point action plan for pollinators 

20 Insect Pollinators 
Initiative (IPI) 

National 
(UK) 

UK research funders invested £10m in an Insect Pollinator Initiative which 
supported multiple research projects aiming to understand the causes and 
consequences of threats to insect pollinators. 

 

 

 

 


