74 research outputs found

    Introgression Among Cultivated and Wild Grapevine in Tuscany

    Get PDF
    Wild grapevine, Vitis vinifera L. subsp. sylvestris (Gmelin, Hegi) is spontaneous to Europe and common in Tuscany. In this study, wild grapevines were identified in 22 populations from eight locations in Tuscan Maremma (Grosseto and Siena province). The plants were propagated by cuttings, collected in a vineyard, genotyped by nuclear simple sequence repeats (SSRs), chloroplast SSRs and single nucleotide polymorphisms (SNPs), and compared to locally cultivated varieties (Vitis vinifera L. subsp. sativa) and to non-vinifera and non-vitis genotypes. The identity analysis revealed that some individuals were redundant genotypes, suggesting natural vegetative propagation. In addition, four of the supposed V.v. sylvestris were in fact naturalized V.v. sativa. The majority of putative sylvestris genotypes had chlorotype A, while the remainder had chlorotype D, as the majority of Vitis vinifera subsp. sativa cultivated in Italy. Some of the recovered sylvestris genotypes appeared to be natural crosses with cultivated grapevine varieties in Tuscany, and their chlorotype suggests a higher pollen flow from sativa to the sylvestris genotypes than in the opposite direction. In addition, other genotypes appeared to be crosses within sylvestris, sylvestris-sativa or sylvestris-sylvestris siblings, or equivalent relationships. These relationships suggest a noticeably level of sexual reproductive activities among sylvestris and sylvestris-sativa genotypes. A cluster and structure analysis clearly differentiated the true sylvestris from the sativa, and the nonvinifera or non-vitis genotypes, and also highlighted a possible introgression of sylvestris into some Italian and French cultivated varieties. The results therefore suggest that, in addition to the primary ancient center of domestication from the Near East to Central Asia, the introgression among cultivated and wild grapevine occurred in other centers of diversification along the migration routes, contributing to the domestication processes, and suggesting that these processes are still ongoing despite the reduction in populations of sylvestris. The results also highlight that the GrapeReSeq 18K Vitis genotyping chip are suitable for non-vitis genotyping and that the range of SNPs heterozygosity in sylvestris appears to be up to 6% less and does not overlap the heterozygosity range of sativa genotypes

    Persistent identification of instruments

    Get PDF
    Instruments play an essential role in creating research data. Given the importance of instruments and associated metadata to the assessment of data quality and data reuse, globally unique, persistent and resolvable identification of instruments is crucial. The Research Data Alliance Working Group Persistent Identification of Instruments (PIDINST) developed a community-driven solution for persistent identification of instruments which we present and discuss in this paper. Based on an analysis of 10 use cases, PIDINST developed a metadata schema and prototyped schema implementation with DataCite and ePIC as representative persistent identifier infrastructures and with HZB (Helmholtz-Zentrum Berlin für Materialien und Energie) and BODC (British Oceanographic Data Centre) as representative institutional instrument providers. These implementations demonstrate the viability of the proposed solution in practice. Moving forward, PIDINST will further catalyse adoption and consolidate the schema by addressing new stakeholder requirements

    Length and GC Content Variability of Introns among Teleostean Genomes in the Light of the Metabolic Rate Hypothesis

    Get PDF
    A comparative analysis of five teleostean genomes, namely zebrafish, medaka, three-spine stickleback, fugu and pufferfish was performed with the aim to highlight the nature of the forces driving both length and base composition of introns (i.e., bpi and GCi). An inter-genome approach using orthologous intronic sequences was carried out, analyzing independently both variables in pairwise comparisons. An average length shortening of introns was observed at increasing average GCi values. The result was not affected by masking transposable and repetitive elements harbored in the intronic sequences. The routine metabolic rate (mass specific temperature-corrected using the Boltzmann\u27s factor) was measured for each species. A significant correlation held between average differences of metabolic rate, length and GC content, while environmental temperature of fish habitat was not correlated with bpi and GCi. Analyzing the concomitant effect of both variables, i.e., bpi and GCi, at increasing genomic GC content, a decrease of bpi and an increase of GCi was observed for the significant majority of the intronic sequences (from ~40% to ~90%, in each pairwise comparison). The opposite event, concomitant increase of bpi and decrease of GCi, was counter selected (from <1% to ~10%, in each pairwise comparison). The results further support the hypothesis that the metabolic rate plays a key role in shaping genome architecture and evolution of vertebrate genomes

    Parentage Atlas of Italian Grapevine Varieties as Inferred From SNP Genotyping

    Get PDF
    The Italian grape germplasm is characterized by a high level of richness in terms of varieties number, with nearly 600 wine grape varieties listed in the Italian National Register of Grapevine Varieties and with a plethora of autochthonous grapes. In the present study an extended SNP genotyping has been carried out on Italian germplasm of cultivated Vitis vinifera subsp. sativa and Vitis hybrids. Several hundred Italian varieties maintained in the repositories of scientific Institutions and about one thousand additional varieties derived from previous studies on European, Southern Italy, Magna Graecia and Georgian germplasm were considered. The large genotyping data obtained were used to check the presence of homonyms and synonyms, determine parental relationships, and identify the main ancestors of traditional Italian cultivars and closely-related accessions. The parentage among a set of 1,232 unique varieties has been assessed. A total of 92 new parent-offspring (PO) pairs and 14 new PO trios were identified. The resulted parentage network suggested that the traditional Italian grapevine germplasm originates largely from a few central varieties geographically distributed into several areas of genetic influence: “Strinto porcino” and its offspring “Sangiovese”, “Mantonico bianco” and “Aglianico” mainly as founder varieties of South-Western Italy (IT-SW); Italian Adriatic Coast (IT-AC); and Central Italy with most varieties being offsprings of “Visparola”, “Garganega” and “Bombino bianco”; “Termarina (Sciaccarello)” “Orsolina” and “Uva Tosca” as the main varieties of North-Western Italy (IT-NW) and Central Italy. The pedigree reconstruction by full-sib and second-degree relationships highlighted the key role of some cultivars, and, in particular, the centrality of “Visparola” in the origin of Italian germplasm appeared clear. An hypothetical migration of this variety within the Italian Peninsula from South to North along the eastern side, as well as of “Sangiovese” from South to Central Italy along the Western side might be supposed. Moreover, it was also highlighted that, among the main founders of muscat varieties, “Moscato bianco” and “Zibibbo (Muscat of Alexandria)” have spread over the whole Italy, with a high contribution by the former to germplasm of the North-Western of the peninsula

    Integrating data and analysis technologies within leading environmental research infrastructures: Challenges and approaches

    Get PDF
    When researchers analyze data, it typically requires significant effort in data preparation to make the data analysis ready. This often involves cleaning, pre-processing, harmonizing, or integrating data from one or multiple sources and placing them into a computational environment in a form suitable for analysis. Research infrastructures and their data repositories host data and make them available to researchers, but rarely offer a computational environment for data analysis. Published data are often persistently identified, but such identifiers resolve onto landing pages that must be (manually) navigated to identify how data are accessed. This navigation is typically challenging or impossible for machines. This paper surveys existing approaches for improving environmental data access to facilitate more rapid data analyses in computational environments, and thus contribute to a more seamless integration of data and analysis. By analysing current state-of-the-art approaches and solutions being implemented by world‑leading environmental research infrastructures, we highlight the existing practices to interface data repositories with computational environments and the challenges moving forward. We found that while the level of standardization has improved during recent years, it still is challenging for machines to discover and access data based on persistent identifiers. This is problematic in regard to the emerging requirements for FAIR (Findable, Accessible, Interoperable, and Reusable) data, in general, and problematic for seamless integration of data and analysis, in particular. There are a number of promising approaches that would improve the state-of-the-art. A key approach presented here involves software libraries that streamline reading data and metadata into computational environments. We describe this approach in detail for two research infrastructures. We argue that the development and maintenance of specialized libraries for each RI and a range of programming languages used in data analysis does not scale well. Based on this observation, we propose a set of established standards and web practices that, if implemented by environmental research infrastructures, will enable the development of RI and programming language independent software libraries with much reduced effort required for library implementation and maintenance as well as considerably lower learning requirements on users. To catalyse such advancement, we propose a roadmap and key action points for technology harmonization among RIs that we argue will build the foundation for efficient and effective integration of data and analysis.This work was supported by the European Union’s Horizon 2020 research and innovation program under grant agreements No. 824068 (ENVRI-FAIR project) and No. 831558 (FAIR- sFAIR project). NEON is a project sponsored by the National Science Foundation (NSF) and managed under cooperative support agreement (EF-1029808) to Battell

    Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars

    Get PDF
    Background: Grapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades. Results: Here we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar. Conclusions: Overall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes

    Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white vitis vinifera wine grapes

    Get PDF
    A non-destructive fluorescence-based technique for evaluating Vitis vinifera L. grape maturity using a portable sensor (Multiplex ®) is presented. It provides indices of anthocyanins and chlorophyll in Cabernet Sauvignon, Merlot and Sangiovese red grapes and of flavonols and chlorophyll in Vermentino white grapes. The good exponential relationship between the anthocyanin index and the actual anthocyanin content determined by wet chemistry was used to estimate grape anthocyanins from in field sensor data during ripening. Marked differences were found in the kinetics and the amount of anthocyanins between cultivars and between seasons. A sensor-driven mapping of the anthocyanin content in the grapes, expressed as g/kg fresh weight, was performed on a 7-ha vineyard planted with Sangiovese. In the Vermentino, the flavonol index was favorably correlated to the actual content of berry skin flavonols determined by means of HPLC analysis of skin extracts. It was used to make a non-destructive estimate of the evolution in the flavonol concentration in grape berry samplings. The chlorophyll index was inversely correlated in linear manner to the total soluble solids (°Brix): it could, therefore, be used as a new index of technological maturity. The fluorescence sensor (Multiplex) possesses a high potential for representing an important innovative tool for controlling grape maturity in precision viticulture

    Effectiveness of AFLPs and retrotransposon-based markers for the identification of portuguese grapevine cultivars and clones

    Full text link
    Grapevine germplasm, including 38 of the main Portuguese cultivars and three foreign cultivars, Pinot Noir, Pinot Blanc and Chasselas, used as a reference, and 37 true-to-type clones from the Alvarinho, Arinto, Loureiro, Moscatel Galego Branco, Trajadura and Vinhão cultivars were studied using AFLP and three retrotransposon-based molecular techniques, IRAP, REMAP and SSAP. To study the retrotransposon-based polymorphisms, 18 primers based on the LTR sequences of Tvv1, Gret1 and Vine-1 were used. In the analysis of 41 cultivars, 517 IRAP, REMAP, AFLP and SSAP fragments were obtained, 83% of which were polymorphic. For IRAP, only the Tvv1Fa primer amplified DNA fragments. In the REMAP analysis, the Tvv1Fa-Ms14 primer combination only produced polymorphic bands, and the Vine-1 primers produced mainly ISSR fragments. The highest number of polymorphic fragments was found for AFLP. Both AFLP and SSAP showed a greater capacity for identifying clones, resulting in 15 and 9 clones identified, respectively. Together, all of the techniques allowed for the identification of 54% of the studied clones, which is an important step in solving one of the challenges that viticulture currently faces

    Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √S=7 and 8 TeV in the ATLAS experiment

    Get PDF
    Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H -> gamma gamma, ZZ*, WW*, Z gamma, b (b) over bar, tau tau and mu mu decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb(-1) at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18(-0.14)(+0.15). The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered

    Asymptotic Results for First-Passage Times of Some Exponential Processes

    No full text
    We consider the process {V (t) : t ≥ 0} defined by V (t) = v0eX(t) (for all t ≥ 0), where v0 > 0 and {X(t) : t ≥ 0} is a compound Poisson process with exponentially distributed jumps and a negative drift. This process can be seen as the neuronal membrane potential in the stochastic model for the firing activity of a neuronal unit presented in Di Crescenzo and Martinucci (Math Biosci 209(2):547–563 2007). We also consider the process { V~ (t) : t≥ 0 } , where V~ (t) = v0eX~ ( t ) (for all t ≥ 0) and { X~ (t) : t≥ 0 } is the Normal approximation (as t→ ∞) of the process {X(t) : t ≥ 0}. In this paper we are interested in the first-passage times through a constant firing threshold β (where β > v0) for both processes {V (t) : t ≥ 0} and { V~ (t) : t≥ 0 } ; our aim is to study their asymptotic behavior as β→ ∞ in the fashion of large deviations. We also study some statistical applications for both models, with some numerical evaluations and simulation results
    corecore