387 research outputs found

    The Evolution of Plant Mating System: Is It Time for a Synthesis?

    Get PDF

    Urbanization alters plastic responses in the common dandelion Taraxacum officinale

    Get PDF
    Urban environments expose species to contrasting selection pressures relative to rural areas due to altered microclimatic conditions, habitat fragmentation, and changes in species interactions. To improve our understanding on how urbanization impacts selection through biotic interactions, we assessed differences in plant defense and tolerance, dispersal, and flowering phenology of a common plant species (Taraxacum officinale) along an urbanization gradient and their reaction norms in response to a biotic stressor (i.e., herbivory). We raised plants from 45 lines collected along an urbanization gradient under common garden conditions and assessed the impact of herbivory on plant growth (i.e., aboveground biomass), dispersal capacity (i.e., seed morphology), and plant phenology (i.e., early seed production) by exposing half of our plants to two events of herbivory (i.e., grazing by locusts). Independent from their genetic background, all plants consistently increased their resistance to herbivores by which the second exposure to locusts resulted in lower levels of damage suffered. Herbivory had consistent effects on seed pappus length, with seeds showing a longer pappus (and, hence, increased dispersal capacities) regardless of urbanization level. Aboveground plant biomass was neither affected by urbanization nor herbivore presence. In contrast to consistent responses in plant defenses and pappus length, plant fitness did vary between lines. Urban lines had a reduced early seed production following herbivory while rural and suburban lines did not show any plastic response. Our results show that herbivory affects plant phenotypes but more importantly that differences in herbivory reaction norms exist between urban and rural populations

    Darwin’s wind hypothesis: does it work for plant dispersal in fragmented habitats?

    Get PDF
    Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. Inverse terminal velocity (Vt−1) of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. In the highly patchy Spanish landscapes, seed Vt−1 increased significantly with increasing connectivity. A common garden experiment suggested that differences in Vt−1 may be in part genetically based. The Vt−1 was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, Vt−1 was found to increase along a south–north latitudinal gradient. Our results for M. muralis are consistent with ‘Darwin’s wind dispersal hypothesis’ that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the ‘leading edge hypothesis’ that most recently colonized populations harbour more dispersive phenotypes.

    Correlations among Fertility Components Can Maintain Mixed Mating in Plants

    Get PDF
    Classical models studying the evolution of self-fertilization in plants conclude that only complete selfing and complete outcrossing are evolutionarily stable. In contrast with this prediction, 42% of seed-plant species are reported to have rates of self-fertilization between 0.2 and 0.8. We propose that many previous models fail to predict intermediate selfing rates because they do not allow for functional relationships among three components of reproductive fitness: self-fertilized ovules, outcrossed ovules, and ovules sired by successful pollen export. Because the optimal design for fertility components may differ, conflicts among the alternative pathways to fitness are possible, and the greatest fertility may be achieved with some self-fertilization. Here we develop and analyze a model to predict optimal selfing rates that includes a range of possible relationships among the three components of reproductive fitness, as well as the effects of evolving inbreeding depression caused by deleterious mutations and of selection on total seed number. We demonstrate that intermediate selfing is optimal for a wide variety of relationships among fitness components and that inbreeding depression is not a good predictor of selfing-rate evolution. Functional relationships subsume the myriad effects of individual plant traits and thus offer a more general and simpler perspective on mating system evolution

    Reproductive compensation in the evolution of plant mating systems

    Get PDF
    International audience• Reproductive compensation, the replacement of dead embryos by potentially viable ones, is known to play a major role in the maintenance of deleterious mutations in mammalian populations. However, it has received little attention in plant evolution. Here we model the joint evolution of mating system and inbreeding depression with reproductive compensation. • We used a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. • We showed that reproductive compensation tended to increase the mean number of lethals in a population, but favored self-fertilization by effectively decreasing early inbreeding depression. When compensation depended on the selfing rate, stable mixed mating systems can occur, with low to intermediate selfing rates. • Experimental evidence of reproductive compensation is required to confirm its potential importance in the evolution of plant mating systems. We suggest experimental methods to detect reproductive compensation

    A conceptual framework for predicting the effects of urban environments on floras.

    Get PDF
    1 With the majority of people now living in urban environments, urbanization is arguably the most intensive and irreversible ecosystem change on the planet. 2 Urbanization transforms floras through a series of filters that change: (i) habitat availability; (ii) the spatial arrangement of habitats; (iii) the pool of plant species; and (iv) evolutionary selection pressures on populations persisting in the urban environment. 3 Using a framework based on mechanisms of change leads to specific predictions of floristic change in urban environments. Explicitly linking drivers of floristic change to predicted outcomes in urban areas can facilitate sustainable management of urban vegetation as well as the conservation of biodiversity. 4 Synthesis. We outline how the use of our proposed framework, based on environmental filtering, can be used to predict responses of floras to urbanization. These floristic responses can be assessed using metrics of taxonomic composition, phylogenetic relatedness among species, plant trait distributions or plant community structure. We outline how this framework can be applied to studies that compare floras within cities or among cities to better understand the various floristic responses to urbanization.The working group was funded by the ARC‐NZ Research Network for Vegetation Function. Financial support was also provided by The Baker Foundation

    Global biogeography of mating system variation in seed plants

    Get PDF
    Latitudinal gradients in biotic interactions have been suggested as causes of global patterns of biodiversity and phenotypic variation. Plant biologists have long speculated that outcrossing mating systems are more common at low than high latitudes owing to a greater predictability of plant–pollinator interactions in the tropics; however, these ideas have not previously been tested. Here, we present the first global biogeographic analysis of plant mating systems based on 624 published studies from 492 taxa. We found a weak decline in outcrossing rate towards higher latitudes and among some biomes, but no biogeographic patterns in the frequency of self-incompatibility. Incorporating life history and growth form into biogeographic analyses reduced or eliminated the importance of latitude and biome in predicting outcrossing or self-incompatibility. Our results suggest that biogeographic patterns in mating system are more likely a reflection of the frequency of life forms across latitudes rather than the strength of plant–pollinator interactions

    Parthenogenesis did not consistently evolve in insular populations of Ischnura hastata (Odonata, Coenagrionidae)

    Get PDF
    1. The evolutionary advantages that have driven the evolution of sex are still very much debated, and a number of benefits of parthenogenesis over sexual reproduction have been proposed. In particular, parthenogenetic individuals are thought to exhibit higher probabilities of establishment following arrival in new, isolated habitats such as islands. 2. One notable example of parthenogenesis occurring in islands is the damselfly Ischnura hastata, an American species that has colonised the Azores archipelago, where the populations consist only of females. This is the only known example of parthenogenesis within the insect order Odonata. 3. Here, two island populations of I. hastata were studied, one in the Galapagos and one in Cuba, to test whether island colonisation is consistently associated with parthenogenesis in this species. Field capture-mark-recapture studies and laboratory rearing of field-collected eggs were undertaken in both areas. 4. Sex ratios in the field were found to be heavily female-biased among mature individuals; however, fertility rates of field-collected eggs were high, and the sex ratios in the laboratory did not differ from 1:1. Data from laboratory rearing showed that shorter larval development times and shorter adult life spans in males result in protandry, which might explain the skewed sex ratios in the field. 5. These findings are consistent with sex differences in key demographic parameters which could predispose I. hastata to parthenogenesis. However, the Azores population of I. hastata remains the only documented case of asexual reproduction in this insect group
    corecore