1,322 research outputs found
Negative discriminant states in N=4 supersymmetric string theories
Single centered BPS black hole solutions exist only when the charge carried
by the black hole has positive discriminant. On the other hand the exact dyon
spectrum in heterotic string theory compactified on T^6 is known to contain
states with negative discriminant. We show that all of these negative
discriminant states can be accounted for as two centered black holes. Thus
after the contribution to the index from the two centered black holes is
subtracted from the total microscopic index, the index for states with negative
discriminant vanishes even for finite values of charges, in agreement with the
results from the black hole side. Bound state metamorphosis -- which requires
us to identify certain apparently different two centered configurations
according to a specific set of rules -- plays a crucial role in this analysis.
We also generalize these results to a class of CHL string theories.Comment: LaTeX file, 32 pages; v2: reference added; v3: added new section 3.
Quark Number Susceptibility with Finite Chemical Potential in Holographic QCD
We study the quark number susceptibility in holographic QCD with a finite
chemical potential or under an external magnetic field at finite temperature.
We first consider the quark number susceptibility with the chemical potential.
We observe that approaching the critical temperature from high temperature
regime, the quark number susceptibility divided by temperature square develops
a peak as we increase the chemical potential, which confirms recent lattice QCD
results. We discuss this behavior in connection with the existence of the
critical end point in the QCD phase diagram. We also consider the quark number
susceptibility under the external magnetic field. We predict that the quark
number susceptibility exhibits a blow-up behavior at low temperature as we
raise the value of the magnetic field. We finally spell out some limitations of
our study.Comment: 25 pages, 3 figures, published versio
Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins
Effect of bio-engineering on size, shape, composition and rigidity of bacterial microcompartments
Bacterial microcompartments (BMCs) are proteinaceous organelles that are found in a broad range of bacteria and are composed of an outer shell that encases an enzyme cargo representing a specific metabolic process. The outer shell is made from a number of different proteins that form hexameric and pentameric tiles, which interact to allow the formation of a polyhedral edifice. We have previously shown that the Citrobacter freundii BMC associated with 1,2-propanediol utilization can be transferred into Escherichia coli to generate a recombinant BMC and that empty BMCs can be formed from just the shell proteins alone. Herein, a detailed structural and proteomic characterization of the wild type BMC is compared to the recombinant BMC and a number of empty BMC variants by 2D-gel electrophoresis, mass spectrometry, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Specifically, it is shown that the wild type BMC and the recombinant BMC are similar in terms of composition, size, shape and mechanical properties, whereas the empty BMC variants are shown to be smaller, hollow and less malleable
Recommended from our members
Automated Segmentation of HeLa Nuclear Envelope from Electron Microscopy Images
This paper describes an image-processing pipeline for the automatic segmentation of the nuclear envelope of HeLcells observed through Electron Microscopy. The pipeline was applied to a 3D stack of 300 images. The intermediate results of neighbouring slices are further combined to improve the final results. Comparison with a handsegmented ground truth reported Jaccard similarity values between 94-98% on the central slices with a decrease towards the edges of the cell where the structure was considerably more complex. The processing is unsupervised and each 2D slice is processed in about 5-10 seconds running on a MacBook Pro. No systematic attempt to make the code faster was made. These encouraging results could be further used to provide data for more complex segmentation techniques like Deep Learning, which require a considerable amount of data to train architectures like Convolutional Neural Networks. The code is freely available from https://github.com/reyesaldasoro/HeLa-Cell-Segmentatio
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Thickness and Conductivity of Metallic Layers from Pulsed Eddy Current Measurements
Coatings and surface treatments find a wide range of technological applications; they can provide wear resistance, oxidation and corrosion protection, electrical contact or isolation and thermal insulation. Consequently, the ability to determine the thickness of coated metals is important for both process control and in-service inspection of parts. Presently ultrasonic, thermal, and eddy current inspection methods are used, depending on the circumstances. A number of commercial instruments for determining the thickness of nonconducting coatings on metal substrates are based on the fact that the impedance change of the coil decreases exponentially with the distance of the coil from the metal (the lift-off effect). However, these instruments are not suitable for determining the thickness of metal layers on conducting substrates
Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination.
INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority. METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia. RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105). CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings
Methylation of HOXA9 and ISL1 predicts patient outcome in high-grade non-invasive bladder cancer
Introduction
Inappropriate DNA methylation is frequently associated with human tumour development, and in specific cases, is associated with clinical outcomes. Previous reports of DNA methylation in low/intermediate grade non-muscle invasive bladder cancer (NMIBC) have suggested that specific patterns of DNA methylation may have a role as diagnostic or prognostic biomarkers. In view of the aggressive and clinically unpredictable nature of high-grade (HG) NMIBC, and the current shortage of the preferred treatment option (Bacillus:Calmette-Guerin), novel methylation analyses may similarly reveal biomarkers of disease outcome that could risk-stratify patients and guide clinical management at initial diagnosis.
Methods
Promoter-associated CpG island methylation was determined in primary tumour tissue of 36 initial presentation high-grade NMIBCs, 12 low/intermediate-grade NMIBCs and 3 normal bladder controls. The genes HOXA9, ISL1, NKX6-2, SPAG6, ZIC1 and ZNF154 were selected for investigation on the basis of previous reports and/or prognostic utility in low/intermediate-grade NMIBC. Methylation was determined by Pyrosequencing of sodium-bisulphite converted DNA, and then correlated with gene expression using RT-qPCR. Methylation was additionally correlated with tumour behaviour, including tumour recurrence and progression to muscle invasive bladder cancer or metastases.
Results
The ISL1 genes’ promoter-associated island was more frequently methylated in recurrent and progressive high-grade tumours than their non-recurrent counterparts (60.0% vs. 18.2%, p = 0.008). ISL1 and HOXA9 showed significantly higher mean methylation in recurrent and progressive tumours compared to non-recurrent tumours (43.3% vs. 20.9%, p = 0.016 and 34.5% vs 17.6%, p = 0.017, respectively). Concurrent ISL1/HOXA9 methylation in HG-NMIBC reliably predicted tumour recurrence and progression within one year (Positive Predictive Value 91.7%), and was associated with disease-specific mortality (DSM).
Conclusions
In this study we report methylation differences and similarities between clinical sub-types of high-grade NMIBC. We report the potential ability of methylation biomarkers, at initial diagnosis, to predict tumour recurrence and progression within one year of diagnosis. We found that specific biomarkers reliably predict disease outcome and therefore may help guide patient treatment despite the unpredictable clinical course and heterogeneity of high-grade NMIBC. Further investigation is required, including validation in a larger patient cohort, to confirm the clinical utility of methylation biomarkers in high-grade NMIBC
Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV
Peer reviewe
- …
