2,301 research outputs found

    Precession-induced nonclassicality of the free induction decay of NV centers by a dynamical polarized nuclear spin bath

    Full text link
    The ongoing exploration of the ambiguous boundary between the quantum and the classical worlds has spurred substantial developments in quantum science and technology. Recently, the nonclassicality of dynamical processes has been proposed from a quantum-information-theoretic perspective, in terms of witnessing nonclassical correlations with Hamiltonian ensemble simulations. To acquire insights into the quantum-dynamical mechanism of the process nonclassicality, here we propose to investigate the nonclassicality of the electron spin free-induction-decay process associated with an NV^- center. By controlling the nuclear spin precession dynamics via an external magnetic field and nuclear spin polarization, it is possible to manipulate the dynamical behavior of the electron spin, showing a transition between classicality and nonclassicality. We propose an explanation of the classicality-nonclassicality transition in terms of the nuclear spin precession axis orientation and dynamics. We have also performed a series of numerical simulations supporting our findings. Consequently, we can attribute the nonclassical trait of the electron spin dynamics to the behavior of nuclear spin precession dynamics.Comment: 23 pages, 9 figure

    Nuclear symmetry potential in the relativistic impulse approximation

    Get PDF
    Using the relativistic impulse approximation with the Love-Franey \textsl{NN} scattering amplitude developed by Murdock and Horowitz, we investigate the low-energy (100 MeVEkin400\leq E_{\mathrm{kin}}\leq 400 MeV) behavior of the nucleon Dirac optical potential, the Schr\"{o}dinger-equivalent potential, and the nuclear symmetry potential in isospin asymmetric nuclear matter. We find that the nuclear symmetry potential at fixed baryon density decreases with increasing nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. Furthermore,the obtained energy and density dependence of the nuclear symmetry potential is consistent with those of the isospin- and momentum-dependent MDI interaction with x=0x=0, which has been found to describe reasonably both the isospin diffusion data from heavy-ion collisions and the empirical neutron-skin thickness of 208^{208} Pb.Comment: 8 pages, 5 figures, revised version to appear in PR

    The Impact of Individual Characteristics, Personality Traits, Perceived Risk on Young People's Intention to Participate in Overseas Working Holiday

    Get PDF
    AbstractThis paper analyzes whether individual characteristics, personality traits, and perceived risk will affect young people's intention to participate in overseas working holiday, and taking the three countries of Australia, the United States, and the United Kingdom as examples. The sample consists of young people and students at numerous universities and colleges, with ages ranging from 18 to 31. A total of 350 questionnaires were issued, and 204 valid questionnaires were recovered, with a return rate of 58.2%. Multiple regression was used to test hypotheses. The research results indicate that the factors influencing young people's intention to take working holiday in different countries were not entirely the same. It is found that age, work experience, neuroticism, extroversion, openness to experience, agreeableness, environmental and social risk, and agent and workplace risk may influence intention to participate in overseas working holiday. The research implications and recommendations are also presented

    Characterization of the binding and phosphorylation of cardiac calsequestrin by ɛ protein kinase C

    Get PDF
    AbstractIn this study, we report the cloning of the rat cardiac isoform of calsequestrin on the basis of its interaction with an ɛprotein kinase C-unique sequence (ɛV1) derived from the ɛprotein kinase C regulatory domain. Calsequestrin binds activated ɛprotein kinase C holoenzyme better than the inactive enzyme and nearly three times better than other protein kinase C isozymes. The interaction between ɛprotein kinase C and calsequestrin is mediated by sequences in both the regulatory and kinase domains of the ɛprotein kinase C. Finally, we show that calsequestrin is an ɛprotein kinase C substrate in vitro and protein kinase C phosphorylation of calsequestrin leads to a decreased binding of ɛprotein kinase C to calsequestrin

    Transition Density and Pressure at the Inner Edge of Neutron Star Crusts

    Full text link
    Using the nuclear symmetry energy that has been recently constrained by the isospin diffusion data in intermediate-energy heavy ion collisions, we have studied the transition density and pressure at the inner edge of neutron star crusts, and they are found to be 0.040 fm3^{-3} ρt0.065\leq \rho_{t}\leq 0.065 fm3^{-3} and 0.01 MeV/fm3^{3} Pt0.26\leq P_{t}\leq 0.26 MeV/fm3^{3}, respectively, in both the dynamical and thermodynamical approaches. We have also found that the widely used parabolic approximation to the equation of state of asymmetric nuclear matter gives significantly higher values of core-crust transition density and pressure, especially for stiff symmetry energies. With these newly determined transition density and pressure, we have obtained an improved relation between the mass and radius of neutron stars.Comment: 7 pages, 3 figures, proceeding of "The International Workshop on Nuclear Dynamics in Heavy-Ion Reactions and the Symmetry Energy (IWND2009)

    RETRACTED ARTICLE: STMN-1 is a potential marker of lymph node metastasis in distal esophageal adenocarcinomas and silencing its expression can reverse malignant phenotype of tumor cells

    Get PDF
    BACKGROUND: Distal esophageal adenocarcinoma is a highly aggressive neoplasm. Despite advances in diagnosis and therapy, the prognosis is still poor. Stathmin (STMN-1) is a ubiquitously expressed microtubule destabilizing phosphoprotein. It promotes the disassembly of microtubules and prevents assembly. STMN-1 can cause uncontrolled cell proliferation when mutated and not functioning properly. Recently, found to be overexpressed in many types of human cancers. However, its clinical significance remains elusive in distal esophageal adenocarcinoma. Here, we reported for the first time that STMN-1 is highly overexpressed in adenocarcinomas of the distal esophagus and strongly associated with lymph node metastasis. METHODS: STMN-1 expression in 63 cases of distal esophageal adenocarcinoma was analyzed by immunoblotting, while expression in esophageal adenocarcinoma cells was determined by immunocytochemistry, immunofluorescence, qRT-PCR and western blotting. Lentivirus-mediated RNAi was employed to knock-down STMN-1 expression in Human esophageal adenocarcinoma cells. The relationship between STMN-1 expression and lymph node metastasis in distal esophageal adenocarcinoma was determined by univariate and multivariate analyses. RESULTS: STMN-1 was detected in 31 (49.21%) of the 63 cases. STMN-1 was highly overexpressed in specimens with lymph node metastasis pN (+), but its expression was almost undetected in pN (−) status. Multivarian regression analysis demonstrated that STMN-1 overexpression is an independent factor for lymph node metastasis in distal esophageal adenocarcinoma. STMN-1 shRNA effectively reduced STMN-1 expression in esophageal adenocarcinoma cells (P < 0.05), which significantly suppressed proliferation (P < 0.05), increased migration (P < 0.05) and invasion ability (P < 0.05) and G1 phase arrest (P < 0.05) which lead to induction of apoptosis in esophageal adenocarcinoma cells in vitro. To verify the in vitro data, we conducted in vivo tumor xenograft studies. Esophageal adenocarcinoma cells stably transfected with STMN-1 shRNA significantly reduced tumor xenografts volume in vivo. CONCLUSIONS: STMN-1 overexpression is associated with lymph node metastasis and increase malignancy in distal esophageal adenocarcinoma. In vivo and in vitro laboratory findings, suggests that STMN-1 may be a suitable target for future therapeutic strategies in distal esophageal adenocarcinoma

    Effect of Mg and C contents in MgCNi3, and structure and superconductivity of MgCNi3-xCox

    Full text link
    The effect of Mg and C contents on TC in MgCNi3, and structure and superconductivity of MgCNi3-xCox were studied. It is found that the excess of Mg and C in initial material mixture is favorable to improve TC and obtain single-phase samples. For preparing MgCNi3 superconductor, the optimum composition of starting materials is MgC1.45Ni3 with 20wt.% excess of Mg of the stoichiometric composition. In MgCNi3-xCox system, a continuous solid solution is formed, lattice parameter decreases slightly and TC decreases obviously with increasing x. A suppression of superconductivity is observed due to the substitution of Co (Mn) for Ni. The suppression effect is smaller for the substitution of Co than that of Mn.Comment: 13 pages pd

    Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Get PDF
    The aim of this study is to examine the therapeutic potential of deep sea water (DSW) on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8) and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP). Deep sea water at hardness (HD) 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3) by MTT assay. For in vivo animal study, bone mineral density (BMD) was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP) activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs) were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM)
    corecore