80 research outputs found

    Identification of a Negative Allosteric Site on Human α4β2 and α3β4 Neuronal Nicotinic Acetylcholine Receptors

    Get PDF
    Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders

    Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    Get PDF
    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP

    Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine

    Get PDF
    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe

    Characterizing Ligand-Gated Ion Channel Receptors with Genetically Encoded Ca++ Sensors

    Get PDF
    We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca2+ permeable LGIC and a genetically encoded Förster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT3A serotonin receptors and a chimera of human α7/mouse 5-HT3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    P2 receptors are involved in the mediation of motivation-related behavior

    Get PDF
    The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro

    No full text
    The α7 nicotinic acetylcholine receptor (nAChR) has been implicated widely in behavioural functions and dysfunctions related to the hippocampus, but the detailed mechanisms by which this receptor contributes to these behavioural processes have yet to be elucidated. In the present study, sustained application (5 min) of nicotine significantly lowered the threshold for synaptic plasticity, and thus a long-lasting potentiation was induced by a stimulus that would normally evoke only a short-term potentiation. This effect appeared to be mediated by α7 nAChRs, as it was inhibited by the α7 nAChR-specific antagonist α-bungarotoxin (100 nm), but not by mecamylamine (50 μm) or dihydro-β-erythroidine (DHβE; 1 μm) at concentrations known to be selective for non-α7 nAChRs. Further pharmacological dissection revealed that the effect was also abolished by the NMDA receptor antagonist, D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5; 50 μm). This blockade, however, unmasked a slowly developing nicotine-induced potentiation of field excitatory postsynaptic potential that appeared to be dependent on both α7 nAChR activation and non-α7 nAChR desensitisation. This secondary effect of nicotine was blocked by a combination of picrotoxin (50 μm) and saclofen (100 μm), and thus appeared to be mediated via GABAergic interneurons. The important implication of this study was that the sustained application of α7 nAChR agonists could modulate the conditions for synaptic plasticity through multiple transduction pathways, and not simply the inactivation of α7 nAChRs. These α7-nAChR-dependent mechanisms could reconcile the discrepancies between the previously reported behavioural versus electrophysiological effects of nicotine in the hippocampus

    Modulation of AMPA receptors by cAMP-dependent protein kinase in PreBötzinger complex inspiratory neurons regulates respiratory rhythm in the rat

    No full text
    We hypothesize that phosphorylation of AMPA receptors or associated synaptic proteins modulates the excitability of respiratory neurons in the preBötzinger Complex (preBötC), affecting respiratory rhythm. Using neonatal rat medullary slices that spontaneously generate respiratory rhythm, we examined the role of the cAMP–PKA pathway (PKA:cAMP-dependent protein kinase) in modulating glutamatergic synaptic transmission, the excitability of inspiratory neurons in the preBötC and respiratory rhythm. Microinjection of forskolin, an activator of adenylate cyclase, into the preBötC with or without the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), decreased the period (increased the frequency) of respiratory-related rhythmic motor output in the hypoglossal nerve (XIIn) to 84 % (without IBMX) and to 72% (with IBMX) of the pre-injection baseline. In the presence of MK-801, a non-competitive NMDA receptor antagonist, microinjection of forskolin plus IBMX decreased the period to 66% of baseline levels. Microinjection of Rp-adenosine 3′,5′-cyclic monophosphothioate (Rp-cAMPS), a PKA inhibitor, increased the period to 145% of baseline levels. Concurrent microinjection of Rp-cAMPS and forskolin had no effect on the period. Bath application of 7β-deacetyl-7β-[γ-(morpholino)butyryl]-forskolin hydrochloride (7Db-forskolin, a water-soluble derivative of forskolin): (1) decreased the period to 67% of baseline levels without affecting the amplitude of integrated XIIn inspiratory discharge, (2) induced a tonic inward current of 29 pA and enhanced inspiratory drive current (the amplitude increased to 183% and the integral increased to 184% of baseline) in voltage-clamped (holding potential =−60 mV) preBötC inspiratory neurons and (3) increased the frequency to 195 % and amplitude to 118% of spontaneous excitatory postsynaptic currents (sEPSCs) during expiratory periods. Dideoxy-forskolin did not have these effects. Intracellular perfusion with the catalytic subunit of PKA (cPKA) into preBötC inspiratory neurons progressively enhanced inspiratory drive currents and, in the presence of TTX, increased the inward currents induced by local ejection of AMPA; the latter currents were blocked by 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulphonamide (NBQX, an AMPA/kainate receptor antagonist). The effects of cPKA were blocked by co-application of PKA inhibitor (6–22) amide (PKI). These results suggest that phosphorylation of postsynaptic AMPA receptors through the cAMP–PKA pathway modulates both tonic and phasic excitatory amino acid synaptic transmission and excitability of inspiratory neurons in the preBötC and, therefore, regulates respiratory rhythm. Moreover, the basal level of endogenous PKA activity appears to be a determinant of resting respiratory frequency
    corecore