7 research outputs found

    Statistical Methods for Linking Health, Exposure, and Hazards

    Get PDF
    The Environmental Public Health Tracking Network (EPHTN) proposes to link environmental hazards and exposures to health outcomes. Statistical methods used in case–control and cohort studies to link health outcomes to individual exposure estimates are well developed. However, reliable exposure estimates for many contaminants are not available at the individual level. In these cases, exposure/hazard data are often aggregated over a geographic area, and ecologic models are used to relate health outcome and exposure/hazard. Ecologic models are not without limitations in interpretation. EPHTN data are characteristic of much information currently being collected—they are multivariate, with many predictors and response variables, often aggregated over geographic regions (small and large) and correlated in space and/or time. The methods to model trends in space and time, handle correlation structures in the data, estimate effects, test hypotheses, and predict future outcomes are relatively new and without extensive application in environmental public health. In this article we outline a tiered approach to data analysis for EPHTN and review the use of standard methods for relating exposure/hazards, disease mapping and clustering techniques, Bayesian approaches, Markov chain Monte Carlo methods for estimation of posterior parameters, and geostatistical methods. The advantages and limitations of these methods are discussed

    Content and performance of the MiniMUGA genotyping array: A new tool to improve rigor and reproducibility in mouse research

    Get PDF
    The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research

    Content and Performance of the MiniMUGA Genotyping Array, a New Tool To Improve Rigor and Reproducibility in Mouse Research.

    No full text
    The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well annotated genome, wealth of genetic resources and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost effective, informative and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole genome sequencing. Here we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array, MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: 1) chromosomal sex determination, 2) discrimination between substrains from multiple commercial vendors, 3) diagnostic SNPs for popular laboratory strains, 4) detection of constructs used in genetically engineered mice, and 5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA we genotyped 6,899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived and recombinant inbred lines. Here we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC and an important new tool to the increase rigor and reproducibility of mouse research

    Physical Properties of Thiophene Derivatives

    No full text
    corecore