53 research outputs found

    Zoantharians (Hexacorallia: Zoantharia) Associated with Cold-Water Corals in the Azores Region: New Species and Associations in the Deep Sea

    Get PDF
    Zoantharians are a group of cnidarians that are often found in association with marine invertebrates, including corals, in shallow and deep-sea environments. However, little is known about deep-sea zoantharian taxonomy, specificity and nature of their associations with their coral hosts. In this study, analyses of molecular data (mtDNA COI, 16S, and 12S rDNA) coupled with ecological and morphological characteristics were used to examine zoantharian specimens associated with cold-water corals (CWC) at depths between 110 and 800 m from seamounts and island slopes in the Azores region. The zoantharians examined were found living in association with stylasterids, antipatharians and octocorals. From the collected specimens, four new species were identified: (1) Epizoanthus martinsae sp. n. associated with the antipatharian Leiopathes sp.; (2) Parazoanthus aliceae sp. n. associated with the stylasterid Errina dabneyi (Pourtalès, 1871); (3) Zibrowius alberti sp. n. associated with octocorals of the family Primnoidae [Paracalyptrophora josephinae (Lindström, 1877)] and the family Plexauridae (Dentomuricea aff. meteor Grasshoff, 1977); (4) Hurlizoanthus hirondelleae sp. n. associated with the primnoid octocoral Candidella imbricata (Johnson, 1862). In addition, based on newly collected material, morphological and molecular data and phylogenic reconstruction, the zoantharian Isozoanthus primnoidus Carreiro-Silva, Braga-Henriques, Sampaio, de Matos, Porteiro & Ocaña, 2011, associated with the primnoid octocoral Callogorgia verticillata (Pallas, 1766), was reclassified as Zibrowius primnoidus comb. nov. The zoantharians, Z. primnoidus comb. nov., Z. alberti sp. n., and H. hirondelleae sp. n. associated with octocorals showed evidence of a parasitic relationship, where the zoantharian progressively eliminates gorgonian tissue and uses the gorgonian axis for structure and support, and coral sclerites for protection. In contrast, the zoantharian P. aliceae sp. n. associated with the stylasterid E. dabneyi and the zoantharian E. martinsae sp. n. associated with the antipatharian Leiopathes sp., appear to use the coral host only as support with no visible damage to the host. The monophyly of octocoral-associated zoantharians suggests that substrate specificity is tightly linked to the evolution of zoantharians.Zibrowius alberti sp. n. urn:lsid:zoobank.org:act:8E186AD4-CA6E-419B-B46A-4C8D11C757DDHurlizoanthus hirondelleae sp. n. urn:lsid:zoobank.org:act:6737B10E-9E87-4BA0-9559-C22D49863732Parazoanthus aliceae sp.n. urn:lsid:zoobank.org:act:3D3AA61D-E5CC-47DF-94F1-A4A2FF59ABEAEpizoanthus martinsae sp. n. urn:lsid: zoobank.org:act:04686BB5-03D7-4132-B52B-CC89DF8EBFA8urn:lsid:zoobank.org:pub:FED88229-30F9-481F-9155-FF481790AE5

    A road map for defining Good Environmental Status in the deep-sea

    Get PDF
    The development of tools to assess the Good Environmental Status (GES) in the Deep Sea (DS) is one of the aspects that ATLAS WP3 is addressing. GES assessment in the DS is challenging due to 1) the lack of baseline data, 2) the remoteness of the DS ecosystems, and 3) the limitations of the sampling methods currently available. Throughout the duration of the project, ATLAS will develop a suitable approach to address GES in the DS. During the 2nd General Assembly, we will present a draft for a “road map” to address GES in the DS as well some of the aspects discussed during the 2017 ICES WG on Deep Sea Ecosystems. The temporal and spatial scale at which GES should be assessed in the deep-sea is an important aspect to be considered. Due to the data limited situation and challenges posed to monitoring, it may well be the case that GES will have to be assessed at large spatial and temporal scales when comparing the shallower waters of the European Seas. For similar reasons, the type of indicators to be used may have to be simplified and likely be based on high-level analyses related to traits, pressures/risks, and habitat /ecosystem resilience. Ultimately, the results of the combined analyses of GES descriptors might bring to a potential refining or redefinition of the GES concept for the deep-sea

    Zoantharians (Hexacorallia: Zoantharia) associated with cold-water corals in the azores region: New species and associations in the deep sea

    Get PDF
    Zoantharians are a group of cnidarians that are often found in association with marine invertebrates, including corals, in shallow and deep-sea environments. However, little is known about deep-sea zoantharian taxonomy, specificity and nature of their associations with their coral hosts. In this study, analyses of molecular data (mtDNA COI, 16S, and 12S rDNA) coupled with ecological and morphological characteristics were used to examine zoantharian specimens associated with cold-water corals (CWC) at depths between 110 and 800 m from seamounts and island slopes in the Azores region. The zoantharians examined were found living in association with stylasterids, antipatharians and octocorals. From the collected specimens, four new species were identified: (1) Epizoanthus martinsae sp. n. associated with the antipatharian Leiopathes sp.; (2) Parazoanthus aliceae sp. n. associated with the stylasterid Errina dabneyi (Pourtalès, 1871); (3) Zibrowius alberti sp. n. associated with octocorals of the family Primnoidae [Paracalyptrophora josephinae (Lindström, 1877)] and the family Plexauridae (Dentomuricea aff. meteor Grasshoff, 1977); (4) Hurlizoanthus hirondelleae sp. n. associated with the primnoid octocoral Candidella imbricata (Johnson, 1862). In addition, based on newly collected material, morphological and molecular data and phylogenic reconstruction, the zoantharian Isozoanthus primnoidus Carreiro-Silva, Braga-Henriques, Sampaio, de Matos, Porteiro & Ocaña, 2011, associated with the primnoid octocoral Callogorgia verticillata (Pallas, 1766), was reclassified as Zibrowius primnoidus comb. nov. The zoantharians, Z. primnoidus comb. nov., Z. alberti sp. n., and H. hirondelleae sp. n. associated with octocorals showed evidence of a parasitic relationship, where the zoantharian progressively eliminates gorgonian tissue and uses the gorgonian axis for structure and support, and coral sclerites for protection. In contrast, the zoantharian P. aliceae sp. n. associated with the stylasterid E. dabneyi and the zoantharian E. martinsae sp. n. associated with the antipatharian Leiopathes sp., appear to use the coral host only as support with no visible damage to the host. The monophyly of octocoral-associated zoantharians suggests that substrate specificity is tightly linked to the evolution of zoantharians.publishedVersio

    Peeping through the deep: Insights to the reproductive strategies of cold water gorgonians in the Azores Archipelago

    Get PDF
    INTRODUCTION:The mean age at delivery has increased over the latest half of a century. Women of advanced maternal age have increased obstetrical risks and increased risk of chromosomal abnormalities and some other specified diagnoses in the offspring. The aim of this study was to assess the association between maternal age and overall child morbidity according to main diagnosis groups. MATERIAL AND METHODS:We conducted a national cohort study including 352 027 live firstborn singleton children. The children were born between Jan 1994 and Dec 2009 and followed to Dec 2012. Children were divided into groups according to maternal age: 15-24, 25-29, 30-34, and 35+ years. Poisson regression analyses calculated adjusted incidence rate ratios (IRR) of child morbidities according to main diagnoses groups A-Q of the International Classification of Disease 10 with adjustment for year of birth, body mass index, smoking, and mother's level of education. RESULTS:Average follow-up time was 11 years. Compared to children born to women 25-29 years, firstborn children to mothers aged 35+ had higher child morbidity in 8 of 19 main diagnosis groups and firstborn children to mothers 15-24 years had higher child morbidity in 12 of 19 main diagnosis groups. Thus, for a majority of diseases a U-shaped correlation was found, with lowest rates in women 25-29 years. CONCLUSION:Firstborn children to both older and younger mothers have higher overall morbidity as compared to children born by mothers 25-29 years

    Benthic O-2 uptake by coral gardens at the Condor seamount (Azores)

    Get PDF
    Using the non-invasive aquatic eddy covariance technique, we provide the first oxygen (O-2) uptake rates from within coral gardens at the Condor seamount (Azores). To explore some of the key drivers of the benthic O-2 demand, we obtained benthic images, quantified local hydrodynamics, and estimated phototrophic biomass and deposition dynamics with a long-term moored sediment trap. The coral gardens were dominated by the octocorals Viminella flagellum and Dentomuricea aff. meteor. Daily rates of O-2 uptake within 3 targeted coral garden sites (203 to 206 m depth) ranged from 10.0 t 0.88 to 18.8 +/- 2.0 mmol m(-2) d(-1) (mean +/- SE) and were up to 10 times higher than 2 local sandy reference sites within the seamount summit area. The overall mean O-2 uptake rate for the garden (13.4 mmol m(-2) d(-1)) was twice the global mean for sedimentary habitats at comparable depths. Combined with parallel ex situ incubations, the results suggest that the octocorals might contribute just -similar to 5% of the observed O-2 uptake rates. Deposition of particulate organic matter (POM) assessed by the sediment trap accounted for less than 10% of the O-2 demand of the coral garden, implying a substantial POM supply circumventing the deployed traps. Our results expand the database for carbon turnover rates in cold-water coral habitats by including the first estimates from these largely understudied coral gardens.Peer reviewe

    Biodiversity and benthic megafaunal communities inhabiting the Formigas Bank (NE Azores)

    Get PDF
    The Formigas Bank is an offshore seamount located in the easternmost part of the Azores archipelago (northeast Atlantic). It rises from abyssal depths to the surface, including a small set of islets. The bank holds multiple nature conservation designations, including a Natura 2000 Special Area of Conservation, an OSPAR Marine Protected Area, a RAMSAR site and a Nature Reserve declared under the Azores network of protected areas. The protection is based on the presence of sublittoral biotopes of high conservation interest, and importance as feeding grounds, spawning and nursery areas for many marine species, including fish, cetaceans and turtles. Although some information exists on the sublittoral communities occurring on the seamount summit (e.g., infralittoral Cystoseira and Laminaria beds, circalittoral hydrarian and sponge gardens, rich pelagic fauna), virtually no information was available on the deep-sea communities inhabiting the seamount flanks. Therefore, during the MEDWAVES cruise, the flanks of the Formigas bank have been surveyed using multibeam sonar, an ROV and oceanographic profiles, with the objective to characterise deep-sea biodiversity and megafaunal communities as well as the environment where they occur. This communication will present results from the video annotations of the ten dives made on the seamount slopes between ~500m and ~1,500 m depth. Diverse communities of sedentary suspension-feeding organisms were observed, with more than 20 cold-water coral species (mainly octocorals) being recorded, as well as many different sponge morphotypes. Dense coral garden habitats and sponge grounds were identified on several occasions, confirming the presence of vulnerable marine ecosystems (VMEs) and of ecologically or biologically significant areas (EBSAs). Differences in the abundance and composition of these habitats between the northern and southern dive transects are interpreted as reflecting substrate and geomorphological differences, as well as the potential influence of the Mediterranean Outflow Water (MOW). The new knowledge on deep-sea megafaunal communities reinforces the importance of this seamount as an area of high conservation interest

    Ocean Circulation over North Atlantic underwater features in the path of the Mediterranean Outflow Water: Ormonde and Formigas seamounts, and the Gazul mud volcano

    Get PDF
    Seamounts constitute an obstacle to the ocean circulation, modifying it. As a result, a variety of hydrodynamical processes and phenomena may take place over seamounts, among others, flow intensification, current deflection, upwelling, Taylor caps, and internal waves. These oceanographic effects may turn seamounts into very productive ecosystems with high species diversity, and in some cases, are densely populated by benthic organisms, such corals, gorgonians, and sponges. In this study, we describe the oceanographic conditions over seamounts and other underwater features in the path of the Mediterranean Outflow Water (MOW), where populations of benthic suspensions feeders have been observed. Using CTD, LADPC and biochemical measurements carried out in the Ormonde and Formigas seamounts and the Gazul mud volcano (Northeast Atlantic), we show that Taylor caps were not observed in any of the sampled features. However, we point out that the relatively high values of the Brunt–Väisälä frequency in the MOW halocline, in conjunction with the slope of the seamount flanks, set up conditions for the breakout of internal waves and amplification of the currents. This may enhance the vertical mixing, resuspending the organic material deposited on the seafloor and, therefore, increasing the food availability for the communities dominated by benthic suspension feeders. Thus, we hypothesize that internal waves could be improving the conditions for benthic suspension feeders to grow on the slope of seamounts.En prens

    A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses

    Get PDF
    Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Rhinitis associated with asthma is distinct from rhinitis alone: TARIA‐MeDALL hypothesis

    Get PDF
    Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of “one-airway-one-disease,” coined over 20 years ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the “Epithelial Barrier Hypothesis.” This review determined that the “one-airway-one-disease” concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme “allergic” (asthma) phenotype combining asthma, rhinitis, and conjunctivitis.info:eu-repo/semantics/publishedVersio
    corecore