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Abstract

Video and image data are regularly used in the field of benthic ecology to document biodi-

versity. However, their use is subject to a number of challenges, principally the identification

of taxa within the images without associated physical specimens. The challenge of applying

traditional taxonomic keys to the identification of fauna from images has led to the develop-

ment of personal, group, or institution level reference image catalogues of operational taxo-

nomic units (OTUs) or morphospecies. Lack of standardisation among these reference

catalogues has led to problems with observer bias and the inability to combine datasets

across studies. In addition, lack of a common reference standard is stifling efforts in the

application of artificial intelligence to taxon identification. Using the North Atlantic deep sea

as a case study, we propose a database structure to facilitate standardisation of morphos-

pecies image catalogues between research groups and support future use in multiple front-

end applications. We also propose a framework for coordination of international efforts to

develop reference guides for the identification of marine species from images. The proposed

structure maps to the Darwin Core standard to allow integration with existing databases. We

suggest a management framework where high-level taxonomic groups are curated by a

regional team, consisting of both end users and taxonomic experts. We identify a mecha-

nism by which overall quality of data within a common reference guide could be raised over

the next decade. Finally, we discuss the role of a common reference standard in advancing

marine ecology and supporting sustainable use of this ecosystem.

Introduction

There is a long history of using images in marine ecological studies. The first underwater pho-

tograph was taken in 1856 in UK seas [1] but it took until 1893, on the sunlit Mediterranean

seabed, for the first clear images to be produced [2]. Following this, the use of underwater pho-

tography became widespread in shallow seas, opening up this environment to a wider public

(e.g. [3]). The first deep-sea photograph was taken from the porthole of a bathysphere in the

early 1930s [4] and shortly after, the first self-contained deep-sea photographic systems were

developed in the 1940s at the Woods Hole Oceanographic Institution [5,6]. Whilst there were

many good deep-sea photographs available between this time and the early 1970s [7,8], few

biologists studied them, as often no corresponding samples of animals were taken, making

identification difficult [9]. The notable exceptions to this [9, 10, 11, 12, 13, 14] paved the way

for photography to become established as an important tool for the study of deep-water envi-

ronments [15, 16, 17, 18, 19]. Today, with the routine use of seafloor cameras, towed camera

platforms, remotely operated and autonomous underwater vehicles (ROVs and AUVs), photo-

graphic assessment of marine fauna and faunal assemblages is a vital tool for research used by

both scientists and industry [20, 21, 22].

Imaging is an important non-destructive tool for studying marine geology and biodiversity

at a wide range of spatial scales (from millimetres to tens of km) [21, 23]. It enables a rapid

assessment of wide areas while retaining valuable ecological information, such as spatial distri-

bution and associations between organisms and with the landscape. Photographic and video

assessment is particularly useful in complex terrain or sensitive areas [24, 25], where direct

sampling is challenging or undesirable. Imaging is generally used to provide both qualitative
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and quantitative information on the marine environment (e.g. sediment type [26]; hyper-

benthic (living immediately above the seafloor) and midwater organisms [27]; benthic epi-

fauna (the organisms living on the sediment surface [24, 28, 29]); and faunal activity or

behaviour (through visible life traces or video/time-lapse images [30, 31, 32]). As a non-

destructive tool, imaging is also paramount in the identification of Vulnerable Marine Ecosys-

tems (VMEs) [33, 34]. It has also been widely used to access the impact of human activities on

benthic communities e.g. [35, 36] and to evaluate the distribution of marine litter on the sea-

floor e.g. [37, 38]. Imaging has also been applied to detecting and assessing temporal variation

[22, 39]. Estimates of organism densities from seafloor imagery have proven more accurate

than those obtained by physical sampling methods, such as trawling. For instance, densities

derived from seafloor imagery provided a 10-50 fold increase in accuracy in comparison to

trawling in the Porcupine Abyssal Plain in the North East Atlantic [40]. However, it is likely

that diversity is underestimated as a result of difficulties of identification of the taxa to lower

taxonomic levels from imagery [21].

The use of images to collect faunal data brings with it the challenge of identifying taxa from

image data. Identification of physical specimens is usually achieved using taxonomic keys that

have been developed by experts working on specific taxonomic groups. These keys are devel-

oped based on thorough study of preserved specimens, incorporating a systematic analysis of

characteristic morphological features, followed by the development of a dichotomous key.

While traditional taxonomic keys may be useful in the identification of some taxonomic

groups from imagery (e.g. fish), many such keys rely on characteristics that are not visible in

imagery (e.g. the arrangement of mesenteries in anemones, spicule shape in sponges, sclerite

morphology in gorgonians, and the ossicles of holothurians). Therefore, for many taxonomic

groups the development of field guides are essential to support taxon identification from

image data. Many field guides have been developed for shallow-water marine species for use

by SCUBA divers. These rely heavily on image data to show form, function and details of anat-

omy that can be used for accurate identification e.g. [41, 42], but they are rare for depths

beyond recreational SCUBA diving capability (>30 m) (hereinafter referred to as deep-water

species). Good field guides are usually underpinned by a comprehensive understanding of the

species pool for the region of study. For most deep-water regions, this understanding is lack-

ing. Notable exceptions include the Monterey Canyon [43] and the soft sediment (trawlable)

habitats of the North Atlantic. The lack of comprehensive field guides for deep-water marine

organisms presents a significant challenge to those faced with the interpretation of image data

from poorly known regions or habitats, such as seamounts, ridges, or other areas of hard and

high-relief substrates that are not conducive to trawling surveys.

In the absence of a good knowledge of the taxonomy of many groups and regional field

guides, a common practice in the interpretation of image data is the development of a mor-

phospecies reference image dataset (Fig 1) and the use of operational taxonomic unit (OTU)

numbers. The OTU numbers are used in place of taxon names for organisms for which a spe-

cies name has not yet been assigned owing to the lack of physical specimens to corroborate the

observation [24, 43, 44, 45, 46, 47, 48, 49, 50]. These morphospecies reference image catalogues

provide a permanent reference of what has been observed in the study. But perhaps more

importantly, allow the user to differentiate between taxa below the lowest level of the taxo-

nomic hierarchy to which the observed organism can be identified, using traditional taxo-

nomic features, and thus preserve important information on biodiversity. For example,

taxonomic identification of many sponge and soft coral species is impossible from image data

alone, since their taxonomy is based on the arrangement, size and shape of microscopic struc-

tures in their skeletons. Thus, following traditional methods of sample analysis, all observed

species would be assigned the level Porifera or Alcyonacea, resulting in a significant loss of
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resolution in the data. However, use of a morphospecies reference image catalogue allows the

observer to assign morphologically different (and in most cases, likely taxonomically distinct)

forms to a unique OTU number, which can then be assigned to the taxon (e.g. Porifera msp. 1,

Porifera msp 2 etc.) if needed, thereby retaining taxonomic resolution in the data.

The problem with this approach is that each study or group uses a different naming conven-

tion for morphospecies. It then becomes impossible to compare or combine datasets between

studies. Morphospecies catalogues are not usually published, making it difficult for researchers

to compare data or check identifications. Comparison between research studies or industry-

gathered data (for example from environmental impact assessments or site monitoring) are

also impaired by this issue. In addition, both field guides and morphospecies reference image

catalogues fail to document explicitly the visual characteristics used to differentiate taxa. They

generally provide little more than a visual idea of what a taxon looks like. This compounds

problems of observer biases that are well documented in biological sample analysis [51, 52,

53). When identifying taxa from image data, it is necessary to use a combination of traditional

taxonomic features and ecological data (e.g. depth, location, habitat, knowledge of the local

species pool) to arrive at an identification. This skill in ‘field identification’ is often acquired

through an ‘oral tradition’ with little in the way of formalised training materials provided to

new researchers entering the field or new consultants provided with image data to analyse.

Developments in autonomous and robotic technology, and the increased use of them across

different fields, are increasing the amount of image-based data that can be collected [54, 55,

56]. For example, a single 22-hour AUV mission returned over 150,000 seafloor images [40,

56]. Manual image analysis is a time-consuming process, which forms the current bottleneck

in image-based ecological sampling [21, 57, 58, 59]. As a result, a number of research teams

are investigating the use of artificial intelligence (AI) and computer vision (CV) as potential

means to accelerate and standardise the interpretation of ecological image data [51, 52, 53, 56,

Fig 1. Example of a reference image catalogue where representatives of each taxa observed are cropped from an

image, and assigned an OTU number that is subsequently used in image analysis in place of a standard latin

name.

https://doi.org/10.1371/journal.pone.0218904.g001
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60]. The most promising of these techniques is supervised machine learning to automatically

detect and classify taxa [53, 58, 61]. However, consistent interpretations by humans are initially

required, providing ‘gold standard’ classifications, with as much data as possible, which can be

used to train these algorithms. Moving forward, developments in AI and CV approaches that

combine the use of visible morphological characteristics with deep learning, would benefit sig-

nificantly from the development of a standard image-reference dataset. For those taxonomic

groups in which the morphological characteristics commonly used to differentiate taxa are not

discernible in images (e.g. sponges, anemones, zoanthids and plexaurid gorgonians), these

types of combined approaches will first require development of novel visual multi-access keys,

which themselves can only be created from a high-quality reference image dataset and skilful

determination of characteristics differentiating taxa.

While there are a variety of on-line open-access databases that are designed to archive bio-

logical and ecological information, including genetic data (for example GenBank), species

occurrence records (for example the Global Biodiversity Information Facility GBIF) and even

images of taxa (for example Morphbank), there are few that provide a reference guide to sup-

port the interpretation of image-based datasets. Table 1 provides a list of existing field guides

and morphospecies reference image catalogues for deep-water species of the Atlantic Ocean

that are currently publicly available. However, many more are un-published or inaccessible to

others, and are held as a mixture of printed and electronic materials. Recently there have been

attempts to make morphospecies reference image catalogues associated with specific research

programmes or projects available to others (for example [43, 47, 62, 63, 64, 65, 66] to mention

a few). In addition classification based approaches to this issue have also been developed [67].

While useful, this ‘piece-meal’ approach will not solve the challenges outlined above.

There is a clear need for the development of a standard reference guide to support the use

of image-based sampling. Failure to develop appropriate tools will ultimately hinder progress

in marine ecology, particularly in deep-sea marine ecology where images are frequently one of

the few collected datasets. In order to improve data quality and comparability, realise the bene-

fits of new technologies in both image data collection and interpretation, and ultimately raise

standards of taxonomic identification within academia, government, and industry, we must

move towards the use of standard reference guides, quality controlled and curated by experts

in both taxonomy and field identification.

Our aims were to develop 1) a database structure to facilitate the standardisation (and ulti-

mately pooling) of morphospecies reference image catalogues between individuals and groups,

supporting onward use in multiple applications; and 2) a framework for coordination of inter-

national efforts to develop reference guides for the identification of deep-water species from

image-based data.

Methods

The initial stages of developing the framework for the database consisted of assessing the

requirements of those working with image-based data through end user group discussions,

both informally and as part of an international workshop. This included the need for both

online and offline databases and printable catalogues for use in making identifications at sea.

We reviewed current relevant databases and database standards. These were focused

around the Darwin Core standard, the Ocean Biogeographic Information System (OBIS), and

the World Register of Marine Species databases (WoRMS), which are all used regularly by the

end user community.

The Darwin Core is an international standard set of terms and definitions that facilitates

sharing biodiversity data [84]. The Darwin Core quick reference guide (http://rs.tdwg.org/
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Table 1. List of available image catalogues and identification guides of the deep-sea fauna off the Atlanto-Mediterranean region.

Name of resource Geographical scope Taxonomic

scope

Type of

resource

Developer;reference Available at:

Deep Sea ID (v1.2) Global All groups Smartphone

application

NHM, NOC,

WORMS; [68]

http://www.marinespecies.org/deepsea

NOAA Office of Ocean Exploration

and Research Benthic Deepwater

Animal Identification Guide

Global All groups Online portal NOAA [69] https://oceanexplorer.noaa.gov/okeanos/

animal_guide/animal_guide.html

Sharks, batoids, and chimaeras of

the North Atlantic

NA Sharks, batoids

and chimaeras

Book and

digital file

FAO; [70] http://www.fao.org/docrep/017/i3178e/

i3178e.pdf

Catalogue of Atlantic Deep-Sea

fauna

NEA All groups Online portal University of

Plymouth,

IFREMER, NOAA;

[71]

http://www.deepseacatalogue.fr

SERPENT Media Archive NEA All groups Online portal National

Oceanography

Centre ; [72]

http://archive.serpentproject.com

Holothuroidea of the Charlie Gibbs

Fracture Zone area, northern Mid-

Atlantic Ridge

NEA Holothurians Peer-reviewed

journal article

[73] https://doi.org/10.1080/17451000.2012.

750428

An identification guide to sharks,

skates and rays in Northern English

waters

NEA Sharks, skates

and rays

Digital file Shark Trust https://www.sharktrust.org/shared/

downloads/projects/id_guide_sharks_

skates_rays_northern_england.pdf

Deep-sea life of Scotland and

Norway

NEA (Cold water

Faroe-Shetland

Channel and

Norwegian Sea only)

All groups Book [63] Book

A photographic guide of the species

of the Gorringe Bank

NEA (Gorringe Bank

only)

All groups Digital file CCMAR, OCEANA;

[74]

https://www.ccmar.ualg.pt/sites/ccmar.

ualg.pt/files/files/Docs_ASP/Events_2017/

Gorringe/a_photographic_guide_of_the_

species_of_the_gorringe_bank.pdf

Coral identification guide, NAFO

area

NWA Corals Digital file NAFO; [75] https://archive.nafo.int/open/studies/s42/

S42-final.pdf

Sponge identification guide, NAFO

area

NWA Sponges Digital file NAFO; [76] https://archive.nafo.int/open/studies/s43/

S43.pdf

Coral, Sponge, and Other

Vulnerable Marine Ecosystem

Indicator Identification Guide,

NAFO Area

NWA Sponges and

corals

Digital file NAFO; [77] https://www.nafo.int/Portals/0/PDFs/

Studies/s47/s47-print.pdf

Identification sheets for the

common deep-sea corals off the

Northeast and Mid-Atlantic US

(v1.0)

NWA Corals Digital file NOAA; [78] https://www.nefsc.noaa.gov/fsb/training/

NortheasternU.SDeepsea_Coral_Guide.

pdf

Deep Reef Benthos of Bermuda:

Field Identification Guide.

NWA All groups Book and

digital file

Nekton; [66] https://doi.org/10.6084/m9.figshare.

7333838

Field identification guide to the

sharks and rays of the

Mediterranean and Black Sea

MED and BS Sharks and rays Book and

digital file

FAO; [79] http://www.fao.org/3/a-y5945e.pdf

Guide de la faune profonde de la

mer Méditerranée

MED All groups Book MNHN; [80] http://sciencepress.mnhn.fr/fr/collections/

patrimoines-naturels/guide-de-la-faune-

profonde-de-la-mer-mediterranee

Deep-sea sponges of the

Mediterranean Sea

MED Sponges Poster and

digital file

FAO; [81] http://www.fao.org/3/a-i6945e.pdf

Deep-sea corals of the

Mediterranean Sea

MED Corals Poster and

digital file

FAO; [82] http://www.fao.org/3/a-i7256e.pdf

(Continued)
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dwc/terms/), provides a comprehensive glossary of terms (standardised fields with descriptors

and examples) to ensure data concerned with the occurrence of organisms, the physical exis-

tence of specimens in collections, and related environmental information can be standardised.

Darwin Core forms the basis of a number of existing online open-source relevant databases

(e.g. [85, 86, 87, 88]), and, thus, is the internationally agreed standard upon which further data-

base development should be based. Darwin Core Archives (DwC-A) comprise a set of text

files, including both the dataset (.csv) and a document (.xml) which describes the included

files, fields, and their relationships. This offers a standard format used to describe biodiversity

data and is being commonly employed to share more complex and structured datasets.

OBIS [87] was originally developed as the information management component of the Cen-

sus of Marine Life (2000–2010) programme. OBIS founder, Dr. J. F. Grassle, articulated the

vision of OBIS as "an online, worldwide atlas for accessing, modelling and mapping marine

biological data in a multidimensional geographic context”. The OBIS database currently con-

sists of over 55 million observations of nearly 124,000 marine species. In 2009, OBIS was

adopted as a project by the International Oceanographic Data and Information Exchange

(IODE) programme of the Intergovernmental Oceanographic Commission (IOC) of

UNESCO. It represents an internationally important archive for species distribution data.

OBIS is closely linked with WoRMS, which provides the taxonomic backbone, and geospatial

data are provided by the Marine Regions database. Additional functionality includes the taxon

match tool for resolving names used by other similar platforms, providing crucial quality con-

trol support for taxonomic data among the research community and biodiversity platforms

[89].

WoRMS is an authoritative classification and catalogue of marine names including infor-

mation on synonymy, and is curated by around 400 taxonomists globally, in accordance with

best practice [88, 89, 90]. The content of WoRMS is managed by taxonomic and thematic

experts, who are responsible for controlling the quality of the information contained within

the database [89]. WoRMS is underpinned by the Aphia platform, which is a Microsoft Struc-

tured Query Language (MS SQL) database, containing over 400 fields spread over more than

80 related tables. This infrastructure is designed to capture taxonomic and related data and

information. WoRMS is also the basis of the World Register of Deep-Sea Species (WoRDSS),

which, through its app, Deep Sea ID [68], represents one of the few existing image-based deep-

sea species guides (but see Table 1).

The Marine Regions database [91] provides a standard, relational list of geographic names,

coupled with information and maps of the geographic location of these features. All geo-

graphic objects of the Marine Regions database have a unique ID, called the Marine Regions

Geographic Identifier (MRGID). The different geographic objects are determined by a place-

type and coordinates. While the coordinates are represented as different vector data types

Table 1. (Continued)

Name of resource Geographical scope Taxonomic

scope

Type of

resource

Developer;reference Available at:

On the Benthic Invertebrate

Megafauna at the Mid-Atlantic

Ridge, in the Vicinity of the

Charlie-Gibbs Fracture Zone

(Appendix)

NEA Invertebrates PhD thesis [83] https://eprints.soton.ac.uk/id/eprint/

351272

MED–Mediterranean Sea; NA–North Atlantic; NEA–Northeast Atlantic; NWA–Northwest Atlantic; BS–Black Sea

https://doi.org/10.1371/journal.pone.0218904.t001
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being a point, a line or a polygon, a placetype provides contextual information to the geo-

graphic objects, for example a sea, a bay, a ridge, a sandbank or an undersea trench.

Following the initial review of relevant databases and database standards, a strawman data-

base architecture, to facilitate the standardisation of morphospecies reference image catalogues

between individuals / groups, was proposed and circulated to an international team of end

users, database specialists and programmers. An international workshop funded by the Deep-

Sea Biology Society was held at Plymouth University, UK, on the 4th-5th December 2017,

where the draft structure was reviewed and refined. The workshop consisted of a cross section

of attendees including major dataset holders, computer scientists, taxonomists, benthic ecolo-

gists, and representatives from WoRMS / WoRDSS. Following the workshop, the refined

structure was tested by both workshop participants and members of the wider community,

who input their existing morphospecies reference image catalogues into the proposed format.

This resulted in further minor changes and the development of the final data-sharing

structure.

Workshop participants also considered how to coordinate international efforts to develop

reference guides to the identification of deep-water species from images. The following ques-

tions were considered by the workshop attendees, how can we: 1) merge existing published

and unpublished catalogues? 2) manage new submissions to a merged catalogue? 3) improve

the scope and quality of the image data within a merged catalogue? and 4) improve and classify

the quality of identification from images?

Results

End product needs

Workshop participants, and specifically those engaged in image-based analysis, felt the most

critical tools urgently required to support their work were in-situ photo-guides in book format

(hard copy or e-book), a standard reference morphospecies taxonomic tree (or annotation

scheme) that can be imported into different annotation software, and on-line user-friendly

image reference catalogues that include information on characteristics used to classify animals

as belonging to a particular OTU. The final database structure must therefore be such that

these end-use products can be easily created from the database by a query using purpose-built

web-accessible software as part of future developments.

Database structure

The final database structure consists of two tables that contain fields that map onto Darwin

Core fields, together with additional fields for which no Darwin Core equivalent could be

established. Table 2 is the OTU table. It documents the OTU, and primarily maps to fields

from the Darwin Core classes “Taxon” and “Identification”. Table 3 is the image table. It docu-

ments the individual image file and maps onto fields from multiple Darwin Core classes,

including “Occurrence”, “Identification”, “Event”, “Location”, “Record-level”, and “Organ-

ism”. The two tables are related via the “OTU” field. This structure allows a single OTU (one

entry into Table 2) to be related to multiple example images of the OTU (many entries in

Table 3).

The OTU table (Table 2) consists of a GUID field “Number”, the inclusion of which is stan-

dard practice in database tables. The “OTU” field is a unique number given to this taxon and is

initially assigned by the user. The subsequent four fields: “scientificName”, “scientificNa-

meID”, “scientificNameAuthorship”, “taxonRank”, provide the link to the WoRMS database.

The link is via the “scientificNameID” field, which requires the user to input the appropriate

Life Science Identifier (LSID) for the OTU drawn from the WoRMS database. Each taxon in

Global marine taxon reference image database
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WoRMS receives a unique and persistent identifier, known as the AphiaID. This AphiaID can

be expanded to a LSID. WoRMS has implemented LSIDs for all its taxonomic names and they

are displayed on each taxon page. The LSID integrates the AphiaID and so is the preferred

option, of the two possible fields, to use as a link. The appropriate LSID for an OTU is the low-

est formal taxonomic rank that can be assigned to an image. For some taxa, this may be at the

species level; however, for many image-based identifications it will be at a higher taxonomic

level, such as Family, Class or Phylum level. Use of the LSID field ensures that the OTU can be

linked to standard taxonomic nomenclature and the related taxonomic hierarchy. Using this

LSID, the other three fields within the database (“scientificName”, “scientificNameAuthor-

ship”, “taxonRank”) can be auto-populated from WoRMS.

The “Morphospecies” field maps onto the “identificationQualifier” field in Darwin Core

and allows the input of extra details distinguishing between different morphotypes; for exam-

ple, Brisingidae msp1, or in the case of sponges, Porifera encrusting msp1, Porifera branching

msp1. Thus, entries into this field will be of the form msp1, msp2, encrusting msp1, branching

msp1, etc. The “CombinedNameID” field is then autopopulated by adding the “scientific-

Name” and “Morphospecies” fields to give, for example, Brisingidae msp1, Porifera branching

msp1. The “CombinedNameID” field can be mapped onto the “taxonconceptID” Darwin

Core field. A recommended best practice for the standardisation of entries to the “identifica-

tionQualifier” field, specifically related to nomenclatural qualifiers used in image analyses is

now in preparation. The “PreviousName” field is not intended to document recombinations

of taxonomic nomenclature as this is captured and managed in WoRMS [90]. Rather, this field

is to capture changes to the assigned identity of the OTU. For example, where Brisingidae

Table 2. The Operational Taxonomic Unit (OTU) table, one of two tables that make up the final database.

Field name Field required Instructions for field use DarwinCoreClass

Number required GUID (to be assigned by database manager) n/a

OTU required Operational taxonomic unit number—number assigned to that taxa—no order

needed, simply used as a reference number for the taxon.

n/a

scientificName autopopulate from

WoRMS

scientificName should contain the name of the lowest possible taxon rank that

refers to the most accurate identification. E.g. if the specimen was accurately

identified down to family level, but not lower, then the scientificName should

contain the name of the family. This field should always contain the originally

recorded scientific name, even if the name is currently a synomym. This is

necessary to be able to track back records to the original dataset. Do not add sp,

spp, cf or any other extras.

Taxon

scientificNameID required The WoRMS LSID for the corresponding scientificName Taxon

scientificNameAuthorship autopopulate from

WoRMS

Taxonomic authority for the corresponding scientificName Taxon

taxonRank autopopulate from

WoRMS

Level of taxonomic hierarchy given in scientificName, e.g. “family” Taxon

Morphospecies (maps onto

identificationQualifier in Darwin Core)

required Allows the extra detail distinguishing between different morphs e.g. msp1,

msp2, msp3, or in the case of sponges: encrusting, vase, fig, sponge, massive

globose etc.

Identification

CombinedNameID (maps onto

TaxonConceptID in Darwin Core)

autopopulate scientificName + Morphospecies Taxon

PreviousName optional This field is intended to capture previous CombinedNameID. A list

(concatenated and separated) of previous assignments of names to the

Organism. The recommended best practice is to separate the values with a

vertical bar (’ | ’).

n/a

IdentificationFeatures (maps onto

TaxonRemarks in Darwin Core)

optional Free text remarks on why the taxon is what it is. Taxon

IconicImage optional The best example of image(s) of this OTU.

https://doi.org/10.1371/journal.pone.0218904.t002
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Table 3. The image table, one of two tables that make up the final database.

Field name Field

required

Instructions for field use DarwinCoreClass Field name in Darwin

Core if different

Number required GUID (assigned by database manager) n/a

OTU required Operational Taxonomic Unit number n/a

InsituImageName required Name of in-situ Image including file extension. If more than one

image the recommended best practice is to separate the values

with a vertical bar (’ | ’).

Occurrence associatedMedia

ExsituImageName optional Name of ex-situ Image including file extension. If more than one

image the recommended best practice is to separate the values

with a vertical bar (’ | ’).

Occurrence

PhysicalSample (Potentially could

map to ‘basis of record’ field.)

required This is a Yes / No field n/a

ImageCredits required The credit for the image, how it should read in a display. Occurrence associatedReferences

identifiedBy required Who provided the identification Identification

dateIdentified optional Use the ISO 8601:2004(E) standard for date and time e.g. 1973-

02-28T15:25:00

Identification

identificationRemarks optional Free text notes field Identification

identificationVerificationStatus required Score of the quality of the identification. 1 = identified from

image only, 2 = identified from image and physical specimens

sampled from the same region, 3 = identified from image and

that specific physical specimen

Identification

typeStatus optional Holotype, syntype, etc Identification

RawImage required This is the number / name of the original image from which the

species was cut. Generate your own. E.g

CruiseNumber_StationNumber_timestamp

Event eventID

locality required Use established MarineRegions and corresponding coordinates.

http://www.marineregions.org/gazetteer.php?p=search

Location

locationID required Location

locationRemarks optional Free text field for more detailed location data Location

decimalLatitude optional In decimal degrees N Location

decimalLongitude optional In decimal degrees E Location

minimumDepthInMeters required Value in meters of the depth the image was taken at. Use positive

values. If exact depth known please put same value in both fields

Location

maximumDepthInMeters required Location

institutionID required An identifier for the institution having custody of the object(s) or

information referred to in the record.

Record-level

collectionID optional Identifies the collection or dataset within that institute This could

identify a specific catalogue e.g. Howell & Davies 2010.

Record-level

bibliographicCitation optional Citation for the original image database e.g. Howell & Davies,

2010.

Record-level

modified autopopulate The most recent date-time on which the resource was changed. It

is required to use the ISO 8601:2004(E) standard

Record-level

dcterms:license required A legal document giving official permission to do something with

the resource.

Record-level

dcterms:rightsHolder required A person or organization owning or managing rights over the

resource.

Record-level

dcterms:accessRights required Information about who can access the resource or an indication

of its security status. Access Rights may include information

regarding access or restrictions based on privacy, security, or

other policies.

Record-level

previousIdentifications optional This field is intended to capture changes in opinion on the OTU

number of the animal in the image. A list (concatenated and

separated) of previous assignments of OTU to the organism in

the specific image. The recommended best practice is to separate

the values with a vertical bar (’ | ’).

Organism

catalogNumber optional Museum collection Occurrence

(Continued)
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msp1 was later confidently identified to a lower taxonomic level (e.g. Brisinga msp4). This field

would capture its former “CombinedNameID”. The inclusion of the “IdentificationFeatures”

free text field is intended to provide insight into the visual characteristics that observers are

using to distinguish between morphospecies. It is hoped that over time this field will provide

the material to start developing novel visual keys. The “IdentificationFeatures” free text field

may map onto the Darwin Core “TaxonRemarks” field. Finally, the “IconicImage” field is used

to identify the best example image of the OTU present in the database. This field determines

the image that is supplied back to the WoRMS database for use on the appropriate taxon page.

The Image table (Table 3) also has a GUID field “Number”, followed by the “OTU” field,

which provides the relational link to the OTU table (Table 2). The fields “InsituImageName”

and “ExsituImageName” provide the relational link to the images that make up the morphos-

pecies reference image catalogue, and are the name of the image file including the file exten-

sion (e.g. IMG10542.jpg). The “ImageCredits” field ensures the owners of the image are

identified. We discussed at length how best to include in-situ and associated ex-situ images.

While a strong argument was made around the need for good ex-situ images of taxa for use in

developing guides for fisheries observer monitoring of bycatch, the group felt the focus of the

database should be to provide a tool for the interpretation of in-situ image and video data.

Therefore, ex-situ images should only be included in the database together with an accompa-

nying in-situ image of the same individual. As a result, the “InsituImageName” field is

required, while the “ExsituImageName” is optional. Where a physical sample has also been

taken, this should be indicated in the “PhysicalSample” field as a simple yes or no. If this physi-

cal sample has been archived in a museum collection, the catalogue number should be

included in the “catalogNumber” field. If it has been identified using molecular techniques, the

Genbank or similar ID should be included in the “associatedSequences” field.

The fields pertaining to the Darwin Core class “Identification” concern the identification of

the individual in the image, and are self-explanatory (“identifiedBy”, “dateIdentified”, “identi-

ficationRemarks”). The “identificationVerificationStatus” field is the indicator of the quality of

the identification provided. Durden et al. [21] suggest three categories of image quality:

1 = Unconfirmed: the status of the organism is uncertain, pending field collection and further

taxonomic investigation, or the description and naming of a new species, 2 = Provisional: the

Table 3. (Continued)

Field name Field

required

Instructions for field use DarwinCoreClass Field name in Darwin

Core if different

associatedSequences optional For example Genbank ID Occurrence

habitat optional A category or description of the habitat in which the Event

occurred (e.g. seamount, hydrothermal vent, abyssal hill, etc.).

Where possible use classes given in Greene et al., 1999. A

classification scheme for deep seafloor habitats. Oceanologica

acta, 22(6), pp.663-678.

Event

SubstrateType optional There is no consensus on the way in which substrate is

interpreted from image data. Some use EUNIS, others use

modified Folk classification or % of Wentworth classes. It is

recommended to use the Wentworth scale, if more than one

category is used, recommended best practice is to separate the

classes and their respective % with a vertical bar (’ | ’).

n/a

Size optional Approximate size of animal in cm n/a

SubstrateMethod optional e.g. Folk, Wenthworth, EUNIS, Other. n/a

ProjectName optional e.g. DeepLinks, CoralFish, SponGES. n/a

Link to external database optional For example link to another non merged online species guide n/a

https://doi.org/10.1371/journal.pone.0218904.t003
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organism is very likely this species/taxon based on investigation (literature search, consultation

with outside taxonomic experts, 3 = Certain: the organism has been collected and has been

definitively identified by a taxonomic expert. We have modified these categories as follows:

1 = identified from image only, 2 = identified from image and physical specimens sampled

from the same region, 3 = identified from image and physical specimen of the actual individual

in the image. There are often instances where an organism has been identified from an image

and a specimen collected that has not yet been identified. Under these circumstances the qual-

ity score would be 1, but the existence of a specimen noted in the “PhysicalSample” field. Once

a specimen is identified the quality score for the image could be changed to 2 or 3.

The fields pertaining to the Darwin Core class “Location” concern where the image was

taken. We recognise that for older image data archives, exact position data may not have been

recorded. However, the importance of location and depth to field identification of taxa cannot

be understated. We feel it is important to ensure that the terminology used to define location

is consistent with a published standard. In addition, we want to ensure that, in the future,

users will be able to construct local morphospecies reference image catalogues based on selec-

tion of an area through mapping software. The Marine Regions database [91] is ideally placed

to provide this geospatial standard. Its use will also ensure compatibility with OBIS such that

this database can share data with OBIS and vice versa. The required fields “locality” and “loca-

tionID” provide the link to the Marine Regions database. The user must input the appropriate

“locality” and “locationID” for the image drawn from the Marine Regions database. The “loca-

tionRemarks” field is an optional free text field that allows users to capture more detailed loca-

tion information that is not captured by the options available in the Marine Regions database.

The fields “minimumDepthInMeters”, “maximumDepthInMeters” are also required as species

distributions are structured with depth [92] and this characteristic is likely to be important in

the development of future field guides. The remaining fields, “decimalLatitude”, “decimalLon-

gitude”, are optional so as to accommodate older data and / or sensitive data, for example,

from industry partners.

The fields pertaining to the Darwin Core class “Record-level” focus on ownership and ori-

gin of the image. Required information includes the name of the institution that owns the

image (“institutionID”), a licence document (“dcterms:license”), the name of the person /

institution managing right over the image (“dcterms:rightsHolder”), and the terms of access to

the image (“dcterms:accessRights”). It is anticipated that a standard licencing arrangement can

be agreed to upon submission of material to the database, whereby image ownership is

retained by the organisation / individual submitting but use for scientific purposes is freely

granted. Use of images for commercial gain would be prohibited. There are existing licencing

models for WoRDSS and these can be replicated here. Optional fields allow the identification

(“collectionID”) and citation (“bibliographicCitation”) of any previously published or in-

house morphospecies reference image catalogues from which the image data have been drawn.

The modified field is autopopulated and is the most recent date-time on which the resource

was changed.

There are just two fields that relate to the image collection event via the Darwin Core class

“Event”. These are the fields “RawImage”, which maps to the Darwin Core “eventID” field,

and “habitat”. It is not the intention of this database to capture details of the research cruises,

ROV dives, etc., on which the organism images were taken. These details are not overly impor-

tant to the creation of a field guide. However, should this information be viewed as important

in the future, we suggest that images are given the name of the original image from which the

organism was cropped, and that this name be extended to consist of the following elements:

CruiseNumber_StationNumber_timestamp_imagename. The “habitat” field is able to capture

the geomorphological setting in which the organism was observed, e.g. seamount, canyon,
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mid-ocean ridge. We felt this information might be useful in the development of a field guide.

The ideal situation would be to use standardised terms to describe these settings. We suggest

the use of Greene et al. [93] as a standard reference; however, the European Nature Informa-

tion System (EUNIS) [94, 95] or other classification systems may also provide a reasonable

standard and the standard used could be indicated when data are submitted. One final field

maps to the Darwin Core class “Organism” and is used to capture previous names that have

been assigned to the organism in the image (“previousIdentifications”). As with the “Previous-

Name” field in the OTU table, this field is not used to capture taxonomic name changes, which

are well recorded by WoRMS. It is used to capture changes in opinion on the identity of the

organism in the image.

The remaining fields in the Image table do not map to Darwin Core fields but do provide

additional information that is important to record. The “SubstrateType” field allows details of

the substrate on which the organism was observed to be logged. Substrate is an important envi-

ronmental factor that determines the distribution of species and can play a role in the field

identification of taxa. As always though, it is preferable to use standard terminology to record

substrate and there are many standards available. Among workshop participants, there was no

consensus on methods of substrate interpretation from image data, and the terminology stan-

dards used. Some use EUNIS [94, 95], some a modified Folk [96] classification and others per-

centage of Wentworth [97] sediment size classes. The “SubstrateMethod” field allows the user

to indicate the standard they have followed. The “Size” field, standardised to centimetres, is

self-explanatory and may be useful in the future development of a field guide. The “Project-

Name” field offers the opportunity to credit specific projects with provision of imagery, while

the “Link to external database” field enables links to be made to source on-line morphospecies

reference image catalogues.

The images are not stored within the table itself but should be provided as separate image

files. Those with existing morphospecies reference image catalogues have tended to either paste

images into Word or Power Point files, organise their data as Apple ibooks, or organise their

images into Phylum or Class level folders. While this is useful at an individual level, and provides

the end product required, it limits onward use and is not the appropriate format for a database.

A framework for coordination

While the database structure outlined above provides the means to archive data, the develop-

ment of a unified morphospecies reference image catalogue requires a management structure

to curate the database and manage new data submissions. The WoRMS database provides a

model that can be adapted for use with this database. WoRMS is curated by teams who are

responsible for different taxonomic groups. Each team is led by an editor who takes overall

responsibility for that group. We suggest that the morphospecies reference image database is

similarly managed by teams focused at the taxonomic grouping level. The appropriate taxo-

nomic grouping will vary depending on variety represented by each phylogenetic level of the

group, and expertise available. For example, Hexacorallia may have separate teams grouped at

the Order level (e.g. Scleractinia, Actiniaria, Antipatharia), whereas Echinodermata may have

separate teams grouped at Class level (e.g. Asteroidea, Echinoidea, etc.). Each team will consist

of experts in taxonomy of the group plus ecologists engaged in field identification of organisms

from imagery. We felt it was important to have both taxonomists and field ecologists working

together, to ensure that the final database considers both taxonomic rigor and the practical use

of the images. Each team will have a nominated lead, and leads will come together, as a steering

committee, to ensure that a standard approach to data organisation and curation is achieved

across the entire database.

Global marine taxon reference image database

PLOS ONE | https://doi.org/10.1371/journal.pone.0218904 December 31, 2019 13 / 25

https://doi.org/10.1371/journal.pone.0218904


We anticipate a two-stage process whereby an initial effort is made to collate and compile

existing morphospecies reference image catalogues at a regional level using the new database

structure described above as a data transfer format. In this format not all fields will need to be

populated by those submitting data, for example the GUID fields, and other autopopulated

fields. This initial effort to compile existing catalogues would be followed by new and on-going

submissions of data, including from those encountering new organisms not in the existing

database, and from those with higher quality images of organisms already listed in the database

(Fig 2). We have committed to stage 1 of this process and morphospecies reference image data-

bases held by all authors have been entered into this new database format and submitted to a

central repository. Curation teams are now bringing these data submissions together into a

single database.

Fig 2. A conceptual model for how the developed framework will operate.

https://doi.org/10.1371/journal.pone.0218904.g002
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Stage 2 of this process will involve the effort of the global community and could potentially

be a focus for the up-coming UN Decade of Ocean Science for Sustainable Development

(2021–2030). This could be a very light-touch involvement, where end users simply submit

images of new organisms not currently present in the database to the database for inclusion

(Fig 2). Or it could be a more targeted and active involvement aimed at raising the quality of

the data already in the database. For example, principal investigators of research cruises could

actively help to move taxa from “identificationVerificationStatus” 1 to level 3 by targeted in-
situ imaging and collection of organisms on an opportunistic basis. Raising the quality of the

data in the database should be a priority over the next decade, and with that the recognition of

the importance of skills in taxonomy and species identification. A concerted effort to ground

truth species identified from imagery only, should be made in order to provide robust tools

with which to monitor ecosystems.

Ultimately, it is not the database per-se that end users require, but the end products (photo-

guides in book format, taxonomic tree for annotation software, etc.) that can be pulled from

the database. This will require the development of a web interface that draws on the underlying

database to produce multiple end use formats (Fig 2). This aspect of the project represents the

next stage of development and is anticipated to take place over the next two years.

Discussion

Immediate advances enabled by the development of a common reference

standard

We have proposed a common structure for a database from which a morphospecies reference

image catalogue can be built. Our initial development is focused on the North Atlantic deep-

sea benthos as a case study. However, the structure developed is applicable to any marine

region or habitat, and may also be used for terrestrial ecosystems. Individuals need only adopt

the structure and populate the tables with their own data. The Standardised Marine Taxon Ref-

erence Image Database (SMarTaR-ID) will enable different researchers to bring their data

together in a common morphospecies reference image catalogue at an appropriate time.

Within the North Atlantic deep sea that time is now. The implementation of coherent moni-

toring programmes to assess biological biodiversity in marine waters are mandatory under the

EU Marine Strategy Framework Directive (MSFD 2008/56/EC), and all European nations are

required to monitor sites of community importance every six years. An image catalogue, such

as the one herein proposed, will be a powerful instrument to support monitoring efforts, par-

ticularly in poorly surveyed regions. We have outlined a framework by which data can be

brought together, curated, and new submissions managed going forward, which follows a suc-

cessful model already applied by WoRMS.

We anticipate the introduction of a common reference standard for the deep sea to enhance

significantly our understanding of megafaunal biodiversity by enabling multiple researchers to

combine existing datasets to address long-standing ecological questions. This is particularly

the case for hard substrate habitats that dominate features, such as seamounts, ridges, banks,

abyssal hills, canyons, and areas of the continental slope, and for which image-based tech-

niques remain the only effective means of survey. Past exploration of the deep-sea epibenthic

megafauna generated many paradigms, but these were largely built on data obtained using

trawls and sledges. Video and still image-based tools have facilitated quantitative sampling of

previously inaccessible habitats; and the resulting new findings are challenging the prevailing

view of deep-sea ecosystems [98]. However, these new datasets are often limited to individual

features or feature types (e.g. seamounts: [99, 100], abyssal hills: [101] slopes: [66, 102, 103]

canyons: [48, 64, 104, 105, 106]; ridges: [107], fracture zones: [100], and hydrothermal vents:
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[108]) and thus limit our ability to generalise findings. In their review of major outstanding

questions in deep-sea biogeography [109] concluded, among other things, that an integrated

biogeographic framework of hard-substrate areas of the deep sea was required to yield more

realistic estimates of endemism/cosmopolitanism. It has been repeatedly argued that concerted

efforts to link existing independent data streams together to examine long-standing questions

of deep-sea diversity are very much needed in order to move the field forward [109, 110]. The

proposed database will facilitate these advances.

We anticipate that this common reference standard will provide an invaluable tool for envi-

ronmental managers, industry and wider stakeholders. For environmental managers, it will,

for example, enable the development of clearer descriptions and definitions of habitats of con-

servation concern. For example, deep-sea sponge aggregations potentially qualify as Vulnera-

ble Marine Ecosystems (VME) under the United Nations General Assembly (UNGA)

Resolution 61/105. They are also classed as a threatened and declining ecosystem under Annex

V of the Oslo-Paris (OSPAR) Convention for the Protection of the Marine Environment of the

North East Atlantic. However, comprehensive descriptions of deep-sea sponge aggregations,

and specifically the component taxa that compose different types of aggregation, are lacking.

In addition, basin-wide data on the distribution of sponge VME indicator taxa are only avail-

able for those species / genera whose appearance both in-situ and ex-situ are similar (e.g. Geo-

dia, Hyalonema, Pheronema). For many sponge species, the lack of taxonomic resolution

possible when identifying sponges from image data hinders progress in management and con-

servation of these taxa by limiting our ability to 1) effectively describe sponge VME composi-

tion and diversity, and 2) pool data to determine basin-wide distributions. A common

morphospecies reference image catalogue will provide a standard reference to use in VME

descriptions in the absence of confirmed taxonomic identification of species from physical

samples. It will also facilitate the production of basin-wide models of the distribution of habitat

forming sponge taxa to support spatial management decisions [111].

For industry, implementation of a standard approach to referencing morphospecies

between industry and regulators will facilitate a much more effective impact assessment associ-

ated with licensing and consent processes, as well as subsequent monitoring approaches. Often

in industry, a range of sub-contractors are used for routine survey and monitoring work by

the various industry bodies. Therefore, morphotypes are produced per project with no consis-

tency between sub-contractor or between years in long-term monitoring as data are rarely

shared. This standardisation would increase industry and regulatory comparison across appli-

cations and across industries to facilitate cumulative impact assessments, thus allowing better

understanding of impact at feature and site levels, as required in nature conservation legisla-

tion. For industry, this could also decrease levels of risk associated with the assessments as well

as decreased analysis time and costs for survey data, and would be a particularly powerful tool

if industry could include their own data in the database and play an active role in providing

images and survey data.

The need for a standard approach in industry was recently highlighted by the development

of the deep-sea mining industry in the Clarion Clipperton Zone (CCZ) of the central Pacific.

Here, baseline data collection is taking place, commonly including seabed imaging-based

assessments of megafauna [29, 47, 65, 112, 113]. Without a consistent morphospecies reference

image catalogue it is difficult to compare studies and generate regional syntheses. This greatly

hampers conservation and management efforts, which commonly rely on information on bio-

diversity, species ranges and behaviour–ecological properties that are difficult to assess without

good quality and consistent identifications. Recent work to document megafaunal diversity

will help (e.g. 47, 65), but widely adopted and regularly updated catalogues will be vital for

improving scientific understanding and effective environmental management.
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A common morphospecies reference image catalogue may also serve as a tool to support

the identification of taxa from fisheries bycatch by fisheries observers (e.g. [114]. While our

proposed database focuses on in-situ images of taxa, we advocate, and have provided for within

the proposed database structure, the collection of ex-situ images of taxa. There are a number of

existing image guides designed for use by fisheries observers that provide ex-situ images of

VME indicator taxa (Table 1). This database could supplement existing guides by providing

additional imagery. Interestingly, it may also provide a link between in-situ and ex-situ taxon

identification, which may ultimately allow fisheries bycatch data to be pooled with in-situ
image data, again broadening our understanding of species distributions (e.g. [115]).

Finally, the simple act of combining multiple existing morphospecies reference image cata-

logues will advance the overall quality of current identifications. It is important to remember

that image data is no substitute for a physical sample, and a long term goal in this endeavour is

that all image reference material has been ground truthed by a physical specimen identified by

a professional taxonomist. At present different research groups have images of different species

for which the “identificationVerificationStatus” level is 3 (the highest level, confirmed by phys-

ical specimen). By bringing these reference image sets together, we will collectively have more

species that can be identified by reference to images in which we have the highest level of con-

fidence of the animal’s identification.

Future advances enabled by the development of a common reference

standard

The development of a common reference standard has the potential to advance significantly

the field of offshore and deep-sea marine ecology. The ability to pool datasets across time and

space will allow us to address a greater range of questions about the offshore and deep-sea ben-

thic ecosystem than is currently possible. Critically, it will enable us to raise standards of iden-

tification from image data through the development of training materials and quality control

measures. Efforts to develop such tools for shallow water have been undertaken by the UK’s

National Marine Biological Association Quality Control scheme (NMBAQC). This pro-

gramme is steered by a range of academic and governmental organisations, and provides guid-

ance on best practice, as well as identification guides, taxonomic workshops, training exercises

and quality control ring tests.

There will remain some potential shortcomings on the use of such catalogues related to

uncertainties in species identification due to the method of image collection and scale. The

ability to zoom-in on specific features of species with ROV cameras means ROVs may provide

better imagery for identification than AUVs or drop-down cameras, particularly in cases

where species look remarkably similar and occupy overlapping environmental niches. For

example, the octocorals Acanthogorgia armata and Acanthogorgia hirsuta can only be distin-

guished if close up images of the polyps are taken, otherwise identifications have to be left at

genus level. Nevertheless, the development of a common reference standard will expose these

limitations to a wider audience, and help develop agreed international guidance around the

taxonomic levels to which it is appropriate to identify when interpreting image data.

In the longer term, regional field keys are required for use in survey and monitoring of the

deep-sea ecosystem. The construction of tools that allow others to identify taxa reliably and

consistently in the field is perhaps one of the most underappreciated roles for taxonomists. It

is also one of the most challenging roles as taxonomists are often not engaged in field identifi-

cation, and therefore a gap exists between the generator and end user of a key [116]. The start-

ing point for the development of any key is a standard reference against which to compare

new observations. In traditional taxonomy, this is the type specimen, a physical specimen
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from which a species is described, that is subsequently archived in a museum. The develop-

ment of dichotomous or polytomous keys is then achieved by measuring the variability in

observable characteristics within examples of a taxon and between taxa, then selecting charac-

teristics that best discriminate between taxa for a given region / group. These characteristics

are then organised into pathways of character state choices (steps) that lead to identifications.

In order to move forward with the development of much-needed field keys to deep-water

taxa, we must first develop an appropriate standard reference against which to assess new

observations. This reference point remains the holotype specimen. Our proposed database will

establish an image ‘similitype’ (or a series of images that contribute to the similitype) to accom-

pany a physical specimen that has been identified with reference to the holotype of a species,

or through matching DNA sequences to other specimens identified with reference to the holo-

type of a species, and thus link traditional taxonomy to field identification. This approach will

provide a much-needed strategy to advance the taxonomic description of species based on

multisource information collected by both ecologists and taxonomists [117, 118]. If research-

ers use and contribute to this common reference standard, a library of images with examples

of each taxon will be built up over time. This library of image examples can then be used to

understand both the observable characteristics within a species or higher taxonomic level

grouping, and the variability in these characteristics in image-based data. Where possible it is

desirable for these characteristics to be those used in traditional taxonomic keys. However, this

will not be possible for all groups to all levels of the taxonomic hierarchy. For example, while it

is possible to use traditional taxonomic features to determine the order of some coral taxa

from image data, it is not possible to do this for anemone taxa, which rely on internal charac-

teristics for positive identification. It is likely that novel characteristics, combinations of char-

acteristics, as well as the use of circumstantial information (e.g. environmental characteristics),

will be required to enable reliable and consistent field identification of organisms, but even

then some morphotypes will remain as morphotypes.

Multi-access keys (also known as matrix based or free-access keys) may be more appropri-

ate than dichotomous or polytomous keys (also known as single-access keys) for use with

image data as they, by their nature, have multiple access points [116, 119]. Single-access keys

place a logical order on the use of characteristics, with each step in the decision tree taking the

user along a predefined pathway that progressively narrows the number of possibilities for the

identification of the animal. If a characteristic is not visible at any step along this pathway, the

choice required by the user is unanswerable and further progression is not possible. Views of

organisms in in-situ image data can be highly variable, and it is likely that in any one image

only some features will be visible. This may limit the utility of single-access keys with image

data. Multi-access keys enable the user to determine the sequence of choices where the user

can select from the list of characteristics offered in order to arrive at an identification. In the

context of image data, this would allow the user to employ all visible characteristics (and

potentially environmental information) to arrive at an identification. Multi-access keys are

more suitable for computer-aided identification tools [116, 119]. This also makes them a

promising tool to use with image data where analysis is computer based.

If we are to move forward with the application of AI and CV to the identification of taxa,

we must have a common reference standard. Our proposed database aims to meet this need

through future development that will enable the database to interface with image annotation

software, such as Squidle [120] and BIIGLE 2.0 [121,122]. These annotation softwares enable

users to mark the x,y position of organisms within an image and attribute this point / polygon

with a taxon identification. This process of image annotation is the means by which ecologists

extract semantic data from an image in order to then apply numerical and statistical analysis

to these data and answer ecological questions. This annotated dataset is also the base data
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needed in the development of AI and CV algorithms. These algorithms require large numbers

of images to “learn” the features that distinguish the different OTUs to which they have been

exposed, and which of these features are characteristic of each OTU [123, 124]. If researchers

are able to use a common reference standard, thus extracting the same information from an

image regardless of who is annotating it, then collated datasets from various origins could

reach the size needed to train and test CV algorithms (acknowledging challenges of observer

bias). Their use within the field of deep-sea benthic ecology, will then increase exponentially

through accumulation of data, skill and experience. This can only serve to facilitate the devel-

opment of CV and bring us closer to automation of image annotation and data extraction.

Ultimately, standardisation of tools and methods is central to long-term monitoring and

assessments of ocean health. Woodall et al. [125] recognised this and produced GOSSIP (Gen-

eral Ocean Survey and Sampling Iterative Protocol), which outlines a framework of 20 biologi-

cal, chemical, physical, and socioeconomic parameters that allow marine scientists to generate

comparable data on the function, health and resilience of the ocean. There are several interna-

tional efforts underway to try and harmonise ocean observing in the areas of biology and ecol-

ogy, including the efforts of the Group on Earth Observation–Biodiversity Observing Network

(GEO-BON) and the Global Ocean Observing System (GOOS) panel on biology and ecosys-

tem–Essential Ocean Variables (EOVs). These efforts are also being informed by international

efforts, such as the Deep Ocean Observing Strategy (http://www.deepoceanobserving.org/),

which is adding deep ocean context to GOOS EOV specifications. There are more than a

dozen regional alliances internationally, which are implementing the GOOS vision with inter-

national coordination by the IOC. Together these organisations are forming a means for

efforts from individual observers, as well as local to international bodies, to join together to

realise the power of ‘big data’ in observing and understanding change. National-level data

management and communications groups affiliated with GOOS are now working to include

tools, such as automated image classification, into their information technology systems. The

common reference image standard described above will therefore contribute to global efforts

under GOOS.

Conclusions

We have developed a database structure (and data transfer format) to facilitate the standardisa-

tion of morphospecies image catalogues between individuals, research groups, and nations.

We have also proposed a framework for coordination of international efforts to develop refer-

ence guides for the identification of deep-sea species from images. We have highlighted the

potential gains to be made through the use of this database structure by the deep-sea commu-

nity in: increasing the quality and quantity of data available to researchers, improvement of

overall understanding of the deep-sea ecosystem, more effective management and monitoring

by statutory bodies and industry alike, and realising the potential benefits of emerging AI and

CV approaches. To make these gains it is critical there is now uptake of this database format

by the community, and additional funding is found to contribute to stage two development.
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